Solutions of Circulant Geometric Linear Systems

A.C.F. Bueno

Abstract—In this paper, we present the solutions of the two types of circulant geometric linear systems (CGLS): right circulant geometric linear systems (RCGLS) and left circulant geometric linear systems (LCGLS).

Index Terms—right circulant geometric linear system, left circulant geometric linear system.

MSC 2010 Codes – 65F05, 93C05

I. INTRODUCTION

Let \(\{ar^k\}_{k=0}^{\infty} \) be the geometric sequence \(\{a, ar, ar^2, \ldots\} \) where \(a \neq 0 \) and \(r \neq 0, 1 \) then the two types of circulant geometric linear systems are the following:

A right circulant geometric linear system (RCGLS) is a linear system the form

\[
R\vec{x} = \vec{b}
\]

where

\[
R = \begin{pmatrix}
ar & ar^2 & \ldots & ar^{n-2} & ar^{n-1} \\
ar^2 & ar^3 & \ldots & ar^{n-3} & ar^{n-2} \\
r^3 & ar^4 & \ldots & ar^{n-4} & ar^{n-3} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
ar^{n-2} & ar^{n-3} & \ldots & a & ar \\
ar^{n-1} & ar^n & \ldots & ar & a \\
\end{pmatrix}
\]

\[
\vec{x} = \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_{n-1} \\
x_n \\
\end{pmatrix}
\]

\[
\vec{b} = \begin{pmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_{n-1} \\
b_n \\
\end{pmatrix}
\]

A left circulant geometric linear system (LCGLS) is a linear system the form

\[
L\vec{x} = \vec{b}
\]

where

\[
L = \begin{pmatrix}
a & ar & ar^2 & \ldots & ar^{n-2} & ar^{n-1} \\
ar & ar^2 & ar^3 & \ldots & ar^{n-3} & ar^{n-2} \\
ar^2 & ar^3 & ar^4 & \ldots & ar^{n-4} & ar^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
ar^{n-2} & ar^{n-3} & ar^{n-4} & \ldots & a & ar \\
ar^{n-1} & ar^n & \ldots & ar & a \\
\end{pmatrix}
\]

\[
\vec{x} = \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_{n-1} \\
x_n \\
\end{pmatrix}
\]

\[
\vec{b} = \begin{pmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_{n-1} \\
b_n \\
\end{pmatrix}
\]

In [3], it has been shown that the matrices \(R \) and \(L \) are related by the following equation:

\[
L = \Pi R
\]

(1)

where \(\Pi = \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0 \\
\end{pmatrix} \]

which is an orthonormal matrix meaning \(\Pi = \Pi^T = \Pi^{-1} \). Furthermore, left multiplication by \(\Pi \) fixes the first row and does a horizontal flip on the remaining rows. Also, the right multiplication by \(\Pi \) fixes the first column and does a vertical flip on the remaining columns.

In [2], it has been established that

\[
R^{-1} = \frac{1}{ar^n - 1} \begin{pmatrix}
-1 & r & 0 & \ldots & 0 & 0 \\
0 & -1 & r & \ldots & 0 & 0 \\
0 & 0 & -1 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & -1 & r \\
0 & 0 & 0 & \ldots & 0 & -1 \\
\end{pmatrix}
\]

(2)

Hence,

\[
L^{-1} = (\Pi R)^{-1} = R^{-1} \Pi
\]
We will use equations (2) and (3) to prove our main results.

II. MAIN RESULTS

Theorem 2.1: The solutions of RCGLS are the following:

- For \(k=1,2, \ldots, n-1 \)
 \[
 x_k = \frac{b_{k+1} r - b_k}{a(r^n - 1)}
 \]
- and for \(k=n \)
 \[
 x_n = \frac{b_1 r - b_n}{a(r^n - 1)}
 \]

Proof: Solving for \(\bar{x} \), we have \(\bar{x} = R^{-1}\bar{b} \). Using (2), this will yield

\[
\bar{x} = \begin{pmatrix}
\frac{b_2}{a(r^n - 1)} & \frac{b_3}{a(r^n - 1)} & \ldots & \frac{b_n}{a(r^n - 1)} \\
\frac{b_3}{a(r^n - 1)} & \frac{b_4}{a(r^n - 1)} & \ldots & \frac{b_n}{a(r^n - 1)} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{b_n}{a(r^n - 1)} & \frac{b_2}{a(r^n - 1)} & \ldots & \frac{b_3}{a(r^n - 1)}
\end{pmatrix}
\]

which is as desired.

Theorem 2.2: The solutions of LCGLS are the following:

- For \(k=1 \)
 \[
 x_1 = \frac{b_n r - b_1}{a(r^n - 1)}
 \]
- and for \(k=2,3, \ldots, n \)
 \[
 x_k = \frac{b_{n-(k-1)} r - b_{n-(k-2)}}{a(r^n - 1)}
 \]

Proof: Solving for \(\bar{x} \), we have \(\bar{x} = L^{-1}\bar{b} \). Using (3), the result will be

\[
\bar{x} = \begin{pmatrix}
\frac{b_2}{a(r^n - 1)} & \frac{b_3}{a(r^n - 1)} & \ldots & \frac{b_n}{a(r^n - 1)} \\
\frac{b_3}{a(r^n - 1)} & \frac{b_4}{a(r^n - 1)} & \ldots & \frac{b_n}{a(r^n - 1)} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{b_n}{a(r^n - 1)} & \frac{b_2}{a(r^n - 1)} & \ldots & \frac{b_3}{a(r^n - 1)}
\end{pmatrix}
\]

which is as desired.

III. CONCLUSION

In this paper, the solutions of RCGLS and LCGLS were obtained. The solutions are dependent on the first term \(a \), common ratio \(r \) and number of terms \(n \) of the geometric sequence \(\{a^k\}_{k=0}^{\infty} \).

REFERENCES

