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I. INTRODUCTION

IT is well known that metric and norm structures play

pivotal role in functional analysis. So in order to develop

functional analysis one has to take care of the suitable gen-

eralization of these structures. Historically, the problem of

generalization of the metric structure came first.

Different authors introduced ideas of quasi-metric space

[1], generalized metric space([2], [3]), generalized quasi-

metric space [4], dislocated metric space [5], fuzzy metric

space([6], [7], [8]), statistical metric space [9], two metric

space [10] etc.

In this paper, we introduce few well known sequential concepts

in QMS and established some basic theorems like Cantor’s

intersection theorem and a category theorem of Baire’s in

complete QMS. The definitions of different kinds of contrac-

tion mapping are given here and established some fixed point

theorem with uniqueness. Straightforward proofs are omitted

throughout this manuscript.

We organize this manuscript in the following manner:

Section II comprises of some preliminary definitions and

properties. We established some basic theorems like Cantor’s

and Baire’s in section III. Section IV consist of a few fixed

point theorems including a discussion of uniqueness.

II. SOME PRELIMINARY RESULTS.

This section of the paper consist of a collection of prelim-

inary definitions and ideas related to quasi-metric spaces.

Definition 2.1 Consider a nonempty set X and a mapping

ρq : X → [0, ∞). Then ρq is called a quasi-metric on X

if it satisfies the following three conditions:

(QM1) ρq(x, y) = 0 iff x = y;
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(QM2) ρq(x, y) = ρq(y, x) ∀x, y ∈ X;

(QM3) ∃ K ≥ 1 such that

ρq(x, y) ≤ K{ρq(x, z) + ρq(z, y)} for all x, y, z ∈ X .

The order pair (X, ρq) is said to be a quasi-metric space

(QMS). The least value of the constant K satisfying (QM3)

is known as the index of the quasi-metric ρq .

The space (X, ρq) is consider as a strong QMS if it

satisfies the additional condition (QM4) given by:

(QM4) : ∃ K ≥ 1 such that

ρq(xm, xm+p) ≤ K{

p−1
∑

i=0

ρq(xm+i, xm+i+1)} ∀ xm+i ∈ X, ∀ p ∈ N .

Note 2.1 If K = 1 then the quasi-metric ρq is reduced to a

metric and obviously (X, ρq) to a metric space.

Note 2.2 Every metric space is a QMS but not on the

contrary, which is illustrated by an example given by 2.1.

Example 2.1 Let us consider X = R2. Take x =
(x1, x2), y = (y1, y2) ∈ X and then we define

ρq(x, y) = (
√

|x1 − y1|+
√

|x2 − y2|)
2 .

Then (X, ρq) is a QMS without having a metric space.

Proof. First we shall show ρq is a quasi-metric on X .

Conditions (QM1) and (QM2) are directly followed from

definition. For (QM3), it is not difficult to show that

ρq(x, z) ≤ 2{ ρq(x, y) + ρq(y, z)}.

So (X, ρq) is a QMS.

Next we must now show that (X, ρq) is not a metric space.

Take x = (1, 0), y = (0, 0) and z = (0, 1) then

ρq(x, y) = 1, ρq(y, z) = 1 and ρq(x, z) = 4.

So ρq(x, z) > ρq(x, y) + ρq(y, z).
Hence ρq is not a metric i.e. the space (X, ρq) is not a metric

space.

Note 2.3 Example 2.1 illustrate that (X, ρq) a QMS with

quasi index K = 2.

Example 2.2 Suppose that X = R2. For x = (x1, x2), y =
(y1, y2) ∈ X define

ρq(x, y) = (|x1 − y1|+ |x2 − y2|)
2 .

Then (X, ρq) is a QMS having quasi-index K = 3 but not a

metric space.

Example 2.3 Consider X = Rn. For x =
(x1, x2, ...., xn), y = (y1, y2, ........, yn) ∈ X define

ρq(x, y) =
n
∑

i=1

|xi − yi|
2.

Then (X, ρq) is a QMS but not a metric space.

Proof. First we shall prove that (X, ρq) is a QMS.

Conditions (QM1) and (QM2) are immediately

followed. For (QM3), let x = (x1, x2, ......., xn), y =
(y1, y2, ......., yn), z = (z1, z2, ........, zn) ∈ X

in Rn then 2{ ρq(x, y) + ρq(y, z)};
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= 2{
n∑

i=1

|xi − yi|
2 +

n∑

i=1

|yi − zi|
2};

=
n∑

i=1

2{|xi − yi|
2 + |yi − zi|

2};

≥

n∑

i=1

(xi − yi + yi − zi)
2 =

n∑

i=1

|xi − zi|
2 = ρq(x, z).

Next we shall see (X, ρq) is not a metric space.

Take particular points x = (1, 0, 0, ........., 0, 1), y =
(0, 0, , 0, ........., 0, 1) and z = (−1, 0, 0, ........., 0, 0)
in X then

ρq(x, y) = 1, ρq(y, z) = 2, ρq(x, z) = 5.

So ρq(x, z) > ρq(x, y) + ρq(y, z).
Therefore the condition of the example is satisfied.

Definition 2.2 In a QMS (X, ρq),
(i) A sequence {xn}

∞

n=1 ⊂ X is said

(a) to converge to x ∈ X denoted by lim
n→∞

xn = x if

lim
n→∞

ρq(xn, x) = 0;

(b) to be a Cauchy sequence if lim
m, n→∞

ρq(xn, xm) = 0;

(ii) A subset B ⊂ X is said to be complete if every Cauchy

sequence in B converges in B;

(iii) A subset A of X is called be bounded if there exists a

real number M > 0 such that ρq(x, y) ≤ M ∀ x, y ∈ A;

(iv) A subset A of X is said to be closed if for any sequence

{xn} of points of A with lim
n→∞

xn = x implies x ∈ A;

(v) A set A in X is said to be compact if for any sequence

{xn} of points of A has a convergent subsequence which

converges to a point in A.

Proposition 2.1 Suppose (X, ρq) is a QMS.

(a) The limit of a sequence {xn} in X if exists is unique;

(b) The subsequences of a convergent sequence are also

convergent and converges to the limit of the original sequence;

(c) Every sequence which is convergent is also a Cauchy

sequence.

III. CANTOR’S AND BAIRE’S TYPE THEOREMS IN QMS

We advance here few basic properties of QMS and estab-

lished some fundamental theorems of functional analysis like

Cantor’s and Baire’s in complete QMS.

Definition 3.1 Suppose (X, ρq) is a QMS, r > 0 and

x0 ∈ X . Let us define S(x0, r) = {x ∈ X : ρq(x0, x) <
r} and S(x0, r) = {x ∈ X : ρq(x0, x) ≤ r}. Then

S(x0, r) and S(x0, r) are respectively called an open ball(or

open sphere) and a closed ball(or closed sphere) with center

at x0 and having radius r.

Definition 3.2 Consider (X, ρq) is a QMS and A ⊂ X . The

closure of A is denoted by A and is defined by

A={ x : if ∃ a sequence {xn} in A such that lim
n→∞

xn =

x}.

Proposition 3.1 Let us suppose (X, ρq) is a QMS. Then

(a) a sequence {xn} in X converges to x iff every ball S(x, r)
with center at x contains all the points of the sequence except

perhaps a finite number;

(b) for A ⊂ X , x ∈ A iff S(x, r) ∩ A ̸= ϕ for each ball

S(x, r) with center at x;

(c) the union of a finite number of closed sets in X is a closed

set;

(d) the intersection of an arbitrary number of closed sets in X
is a closed set.

Remark 3.1 If A is any set in (X, ρq) and x /∈ A then

there exists a ball S(x, r) which contains no points of A.

Proposition 3.2 For a set A in (X, ρq) , A is closed.

Proof. Consider a sequence {xn} in A and lim
n→∞

xn = x.

Then corresponding to any ϵ > 0, there exists n1 ∈ N leads

to

ρq(xn1
, x) < ϵ. Since xn1

∈ A, there exists y1 ∈ A such

that

ρq(xn1
, y1) < ϵ.

Now ρq(y1, x) ≤ K(ρq(y1, xn1
) + ρq(xn1

, x)) for some

K ≥ 1;

⇒ ρq(y1, x) ≤ 2Kϵ. In the similar manner we can construct

a sequence {yn} in A satisfying

ρq(yn, x) < 2Kϵ
n

∀ n ∈ N .

⇒ lim
n→∞

ρq(yn, x) = 0.

So x ∈ A and A is closed.

Remark 3.2 A = A if A is closed.

Definition 3.3 Suppose that (X, ρq) is a QMS and

A ⊂ X . Then A is open if its complement X −A is closed.

Theorem 3.1 Consider (X, ρq) is a QMS and A is a subset

of X . Then A is open iff every x in A, there is a S(x, r) having

center at x so that S(x, r) ⊂ A.

Proof. Let A be open. Then X − A is closed i.e. X −
A = X −A and A = X − X −A. Let x ∈ A, then

x /∈ X −A. By Remark 3.1, there exists a ball S(x, r)
which contains no points of X −A i.e S(x, r) ⊂ A.

Conversely, assume that for every point x ∈ A, there exists

a ball S(x, r) with center at x such that S(x, r) ⊂ A. By

Remark 3.1, if x ∈ A then x /∈ X − A. Now we claim

that x /∈ X −A. If not, suppose x ∈ X −A then there exists

a sequence {xn} in X − A leading to lim
n→∞

ρq(xn, x) =

0. Therefore for r > 0 and there is a M(r) ∈ N such that

ρq(xn, x) < r ∀ n ≥ M(r), which contradict the fact that

S(x, r) ⊂ A. So x /∈ X −A and x ∈ X−X −A and hence

A ⊂ X −X −A ⊂ A. So A = X −X −A ⇒ X − A =
X −A. Which completes the proof of the theorem.

Proposition 3.3 Assume that (X, ρq) is a QMS. Then

(a) the intersection of a finite number of open sets in (X, ρq)
is an open set;

(b) the union of an arbitrary number of open sets in (X, ρq)
is an open set.

Definition 3.4 Suppose that (X, ρq) is a QMS and A a

bounded subset of X . Then the diameter of A is denoted by

δ (A) and is given by:

δ (A) =
∨
{ρq(x, y) : x, y ∈ A}.

Lemma(RBS) 3.1 Let us consider two sequences {xn} and

{yn} in a QMS (X, ρq) having lim
n→∞

xn = x and lim
n→∞

yn =

y. Then

(1) lim
n→∞

ρq(xn, yn) ≤ K2ρq(x, y);

(2) lim
n→∞

ρq(xn, yn) ≥
ρq(x, y)

K2 ,

K being the index of the quasi-metric ρq .

Proof(1). Now ρq(xn, yn) ≤ K(ρq(xn, x) + ρq(x, yn))
≤ Kρq(xn, x)+K2ρq(x, y)+K2ρq(y, yn);
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⇒ lim
n→∞

ρq(xn, yn) ≤ lim
n→∞

(Kρq(xn, x) +K2ρq(x, y) +

K2ρq(y, yn));
⇒ lim

n→∞

ρq(xn, yn) ≤ K2ρq(x, y).

Proof(2). We know that

ρq(x, y) ≤ K(ρq(x, xn) + ρq(xn, y))
≤ Kρq(x, xn)+K2ρq(xn, yn)+K2ρq(yn, y);

⇒ lim
n→∞

ρq(x, y) ≤ lim
n→∞

(Kρq(x, xn) +K2ρq(xn, yn) +

K2ρq(yn, y)));

⇒ lim
n→∞

ρq(xn, yn) ≥
ρq(x, y)

K2 .

Lemma(RBS) 3.2 Let us suppose that (X, ρq) is a QMS

with quasi index K and A be a bounded subset of X . Then

A is also bounded and δ(A) ≤ K2δ(A).

Proof. Let x, y ∈ A, then there exists sequences

{xn}, {yn} in A such that lim
n→∞

xn = x and lim
n→∞

yn = y. By

Lemma 2.1(2),

ρq(x, y) ≤ K2 lim
n→∞

ρq(xn, yn)

⇒ ρq(x, y) ≤ K2δ(A)
⇒ δ(A) ≤ K2δ(A).

Theorem 3.2(Cantor’s intersection theorem) A QMS

(X, ρq) is complete iff every nested sequence of non-empty

closed subsets A1 ⊃ A2 ⊃ A3....... ⊃ An.... of (X, ρq) with

δ(An) → 0 as n → ∞, be such that ∩∞

n=1An contains

exactly one point.

Proof. Consider xn ∈ An ∀ n ∈ N , then clearly {xn} is

a sequence in X . Now

ρq(xn, xn+p) ≤ δ(An) → 0 as n → ∞. This confirms

that {xn} is a Cauchy sequence. Again by the completeness

property of the space, {xn} converges to a unique limit

x ∈ X . Suppose that T ∈ N , then {xT+n} is a sequence in

AT which converges to x. As AT is closed, x ∈ AT . There-

fore x ∈ An∀ n ∈ N i.e. x ∈ ∩∞

n=1An and so the intersection

is nonempty.

If possible let, y ∈ ∩∞

n=1An. Then

ρq(x, y) ≤ δ(An)∀ n ∈ N
⇒ ρq(x, y) = 0 and x = y.

Conversely, suppose that the condition of the theorem is

satisfied. We must now show that (X, ρq) is complete. For

this, take any Cauchy sequence {xn} in X .

Consider Hn = {xn, xn+1, xn+2, ......}. If ϵ > 0 is

arbitrary, there is a positive integer N such that

ρq(xn, xm) < ϵ if m, n ≥ N . Clearly δ(Hn) → 0 as

n → ∞ which implies δ(Hn) ≤ K2δ(Hn) → 0 as

n → ∞. Again H1 ⊃ H2 ⊃ H3....... ⊃ Hn.... is a nested

family of nonempty and closed sets. By hypothesis, there

exists a unique x satisfying

x ∈ ∩∞

n=1Hn. So ρq(xn, x) ≤ δ(Hn) → 0 as n → ∞ leads

to {xn} converges to x. Hence the theorem.

Proposition 3.4 Suppose (X, ρq) is a QMS and

Y ⊂ X . Then (Y, ρq) is complete iff it is closed.

Definition 3.5 Consider a QMS (X, ρq) and a subset E of

X . Then E is said to be non-dense (or nowhere dense) in X
if for every open ball S(x, ϵ) in X there exists an open ball

S(x1, ϵ1) ⊂ S(x, ϵ) contains no points of E.

Theorem 3.3(Baire’s Category) Considering that (X, ρq)
is a complete QMS, where X ̸= ϕ. Then X can not be

represented by

X = ∪∞

k=1Ak

where Ak’s are nondense in X .

Proof. If possible let

X = ∪∞

k=1Ak

where Ak’s are nondense in X .

Since A1 is nondense in X , there exists an open ball

S1(x1, ϵ1) which contains no points of A1. Since

A2 is nondense in X , there exists an open ball

S2(x2, ϵ2) ⊂ S1(x1,
ϵ1
K2 ) which contains no points of

A2, where K is the index of ρq . Similarly there exists an

open ball S3(x3, ϵ3) ⊂ S(x2,
ϵ2
K2 ) which contains no points

of A3. Proceeding similarly we observed

ρq(xn, xn+p) <
ϵn
K2 (3.1).

Clearly the Cauchy-ness of {xn} is obvious. Further the

completeness of (X, ρq) asserts that there is a x ∈ X
satisfying

lim
n→∞

ρq(xn, x) = 0.

Now from definition and (3.1), we have

ρq(xn, x) ≤ K(ρq(xn, xn+p) + ρq(xn+p, x)) < ϵn
K

+
Kρq(xn+p, x)

(3.2).

Taking p → ∞ in (3.2) we get ρq(xn, x) ≤ ϵn
K

< ϵn ∀ n.

This x ∈ Sn(xn, ϵn) ∀ n ∈ N but does not belongs to any

An. Again x ∈ X = ∪∞

k=1Ak, this leads to a contradiction.

Definition 3.6 Let us consider (X, ρq) is a QMS. Then ρq
is said to be continuous if for any sequences {xn} and {yn}
in this space having lim

n→∞

xn = x and lim
n→∞

yn = y leads to

lim
n→∞

ρq(xn, yn) = ρq(x, y). In this case, the space (X, ρq)

is known as a continuous QMS.

Remark 3.3 Examples 2.1, 2.2 and 2.3 illustrate that

(X, ρq) is a continuous QMS.

Proposition 3.5 In a continuous QMS (X, ρq), an open

ball is an open set and a closed ball is a closed set.

Proof. Suppose (X, ρq) is a continuous QMS and

S(x0, r) = {x ∈ X : ρq(x0, x) < r} is an open

ball in X . We have to prove S(x0, r) is an open set i.e.

the complement Sc(x0, r) is a closed set. Let {xn} be a

sequence in Sc(x0, r) with lim
n→∞

xn = x. The theorem

will be proved if we prove x ∈ Sc(x0, r). If not let

x ∈ S(x0, r) then by the continuity of this space we have

lim
n→∞

ρq(xn, x0) = ρq(x, x0) < r. Therefore there is a

m ∈ N so that ρq(xn, x0) < r whenever n ≥ m, which

contradicts the fact that {xn} belongs to Sc(x0, r).
For the second part we have to prove that S(x0, r) =

{x ∈ X : ρq(x0, x) ≤ r} is a closed set. Considering

{xn} as a sequence S(x0, r) having lim
n→∞

xn = x. The

theorem will be proved if we confirm that x ∈ S(x0, r). If

not, take x /∈ S(x0, r) which implies lim
n→∞

ρq(xn, x0) =

ρq(x, x0) > r, since the space is continuous. Consequently

there is a m ∈ N having ρq(xn, x0) > r whenever

n ≥ m, which contradicts the fact that {xn} is a sequence in

S(x0, r).
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IV. FIXED POINT THEOREMS

Here we introduce the idea of contracting mappings and

prove Banach, Kannan’s and Caristi’s fixed point theorems in

this setting.

Definition 4.1 Let us take a QMS (X, ρq) having quasi

index K and an operator T : X → X satisfying

ρq(Tx, Ty) ≤ δ ρq(x, y) ∀ x, y ∈ X , where δ ∈ (0, 1
K
)

(4.1).

Such type of operator will be known as a contracting operator.

Definition 4.2 Consider two QMS (X, ρq) and (Y, λq)
and an operator T : X → Y . Then T is called continuous

at x in X if for any sequence {xn} of X with xn → x i.e.

lim
n→∞

ρq(xn, x) = 0 implies T (xn) → T (x)

i.e. lim
n→∞

λq(T (xn), T (x)) = 0 . T is continuous if it is

continuous at each point of the domain X .

Remark 4.1 Contracting mapping is continuous.

Lemma 4.1 Assume that (X, ρq) is a QMS and T :
X → X is a contracting mapping. Then for any

x0 ∈ X, xn = {Tn(x0)} is a Cauchy sequence.

Proof. Let x0 ∈ X and x1 = T (x0). Having defined x1

we define x2 = T (x1) = T 2(x0) and in similar manner we

get xn = T (xn−1) = Tn(x0) and so on.

Suppose m < n, let n = m+ p, then

ρq(xm, xm+p) ≤ Kρq(xm, xm+1) +Kρq(xm+1, xm+p);
≤ K δmρq(x0, x1) +
K2ρq(xm+1, xm+2) + K2ρq(xm+2, xm+p);
≤ K δmρq(x0, x1) + K2 δm+1ρq(x0, x1) +
K3 δm+2ρq(x0, x1) + .........+Kp−1 δm+p−2ρq(x0, x1) +
Kp−1 δm+p−1ρq(x0, x1);
≤ K δmρq(x0, x1)[1 + Kδ + (Kδ)2 + (Kδ)3 +
..........................+ (Kδ)p−1], since K ≥ 1;

= K δmρq(x0, x1)
1−(Kδ)p

1−Kδ
;

≤ K δmρq(x0, x1)
1

1−Kδ
, since Kδ < 1;

⇒ lim
m→∞

ρq(xm, xm+p) = 0 .

Hence the Cauchy-ness of {xn} = {Tn(x0)} is satisfied.

Theorem 4.1(Banach) Consider (X, ρq) as a complete

QMS and T : X → X is a contracting mapping. Then fixed

point of T exists and unique.

Proof. Consider x0 ∈ X and so far we imitate the method

employed in Lemma 4.1 and get

xn = T (xn−1) = Tn(x0) ∀ n ∈ N .

By Lemma 4.1, the sequence {xn} is Cauchy. As (X, ρq) is

complete, there is a x in X so that lim
n→∞

xn = x.

Since T is a contracting, it is continuous and lim
n→∞

T (xn) =

Tx.

Now Tx = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x.

Therefore x is a fixed point of the operator T .

Uniqueness: Suppose that x, y ∈ X are any two fixed

points of T . From (4.1) we obtain,

ρq(x, y) = ρq(Tx, Ty) ≤ δ ρq(x, y);
⇒ (1− δ)ρq(x, y) ≤ 0;

⇒ ρq(x, y) = 0.
Therefore x = y.

Theorem 4.2(Kannan) Let us consider (X, ρq) as a

complete QMS and T : X → X be a continuous mapping

such that

ρq(Tx, Ty) ≤ δ [ρq(x, Tx) + ρq(y, Ty)] ∀ x, y ∈ X ,

where 0 < δ < 1
1+K

. Then the operator T has a unique fixed

point.

Proof. Let x0 ∈ X and x1 = T (x0), x2 = T (x1) =
T 2(x0), ........., xn = T (xn−1) = Tn(x0) and so on. Then

ρq(x1, x2) = ρq(T (x0), T (x1)) ≤ δ [ρq(x0, T (x0)) +
ρq(x1, T (x1))]

= δ [ρq(x0, T (x0)) + ρq(x1, x2)]
⇒ ρq(x1, x2) ≤

δ
1−δ

ρq(x0, x1).
Similarly we can show that

ρq(x2, x3) ≤ ( δ
1−δ

)2ρq(x0, x1),

ρq(x3, x4) ≤ ( δ
1−δ

)3ρq(x0, x1),
......................................................

ρq(xn, xn+1) ≤ ( δ
1−δ

)nρq(x0, x1).
By (QM3), there exists K ≥ 1 such that

ρq(xn, xn+p) ≤ K{ρq(xn, xn+1) + ρq(xn+1, xn+p)}
≤ K( δ

1−δ
)nρq(x0, x1) + K2( δ

1−δ
)n+1ρq(x0, x1) +

K3( δ
1−δ

)n+2ρq(x0, x1) + .........

...... + Kp−1( δ
1−δ

)n+p−2ρq(x0, x1) +

Kp−1( δ
1−δ

)n+p−1ρq(x0, x1);
≤ Krnρq(x0, x1)[1+Kr+(Kr)2+.........+(Kr)p−1], where

r = δ
1−δ

;

= Krnρq(x0, x1)
1−(Kr)p

1−Kr
;

< Krnρq(x0, x1)
1

1−Kr
.

Now 0 < δ < 1
1+K

implies Kr ∈ (0, 1) and

lim
n→∞

ρq(xn, xn+p) = 0 .

So that the sequence {xn} is Cauchy sequence.

As (X, ρq) is complete, therefore there exists x ∈ X so that

lim
n→∞

xn = x.

By the continuity of T we have lim
n→∞

T (xn) = Tx.

Now Tx = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x.

Therefore x is a fixed point of T .

Uniqueness: For uniqueness consider any two distinct fixed

points x, y ∈ X of T . Then

ρq(x, y) = ρq(Tx, Ty) ≤ δ[ρq(x, Tx) + ρq(y, Ty)] = 0
⇒ x = y.

Theorem 4.3(Caristi) Let us suppose that (X, ρq) is a

complete strong QMS and T : X → X be a continuous

mapping. Assuming that there is a mapping P : X → (0, ∞)
satisfying

ρq(x, Tx) ≤ P (x)− P (Tx) ∀ x ∈ X,

then there exists fixed point of T in X .

Proof. Take any point x0 ∈ X and x1 = T (x0), x2 =
T (x1) = T 2(x0), ........., xn = T (xn−1) = Tn(x0) and so

on. For any positive integer v we have

ρq(xv, xv+1) = ρq(xv, Txv) ≤ P (xv)− P (Txv)
⇒ ρq(xv, xv+1) ≤ P (xv)− P (xv+1)

⇒

n−1∑

v=0

ρq(xv, xv+1) ≤

n−1∑

v=0

[P (xv)− P (xv+1)]

= P (x0)− P (xn)
≤ P (x0).

So, the series

∞∑

v=0

ρq(xv, xv+1) is convergent. If n, m(=

n+ p) ∈ N then, by (QM4), there exists K ≥ 1 such that
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ρq(xn, xm) ≤ K

m−1∑

v=n

ρq(xv, xv+1).

Since the series

∞∑

v=0

ρq(xv, xv+1) is convergent, for any

positive ϵ there is a natural number n0 leads to
m−1∑

v=n

ρq(xv, xv+1) <
ϵ

K
whenever m > n ≥ n0

⇒ ρq(xn, xm) < ϵ whenever m > n ≥ n0.

Hence {xn} is a Cauchy sequence. Again the completeness

of the space (X, ρq) asserts that there is a x ∈ X such that

lim
n→∞

xn = x.

As T is continuous, lim
n→∞

T (xn) = Tx.

Now Tx = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x.

This completes the proof.

CONCLUSIONS

Metric and norm structure have a great role in the de-

velopment of functional analysis. A thousands of research

work have been done in metric and norm spaces. The con-

cept of fuzzy metric space and fuzzy normed linear space

generalize these structure in a some extent. These are also

not a very recent subject. But, except a few work, there are

no remarkable one in quasi-metric spaces. Knowing this, we

think that there may be some possibility of successful research

in this space. The concepts of Cauchy sequence, Convergent

sequence, Open set, Closed set etc. are introduced here. We

established some basic theorems like Cantor’s intersection the-

orem and Baire’s category theorem in complete QMS. Using

the concept of contracting mapping we prove some fixed point

theorems in complete QMS and uniqueness of this theorems

are studied. Hope there is a scope to develop functional

analysis with this structure in a large extent.
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