Fixed Points of Almost Generalized \(\alpha\)-\(\psi\)-Contractive Maps

G. V. R. Babu* and K. T. Kidane**

** Abstract **— We introduce almost generalized \(\alpha\)-\(\psi\)-contractive maps and prove the existence and uniqueness of fixed points of almost generalized \(\alpha\)-\(\psi\)-contractive maps in partially ordered sets endowed with a metric. Our results extend and generalize the results of Samet, Vetro and Vetro [16], Karapinar and Samet [8] and Cirić, Abbas, Saadati and Hussain [6]. Furthermore, we provide examples in support of our results.

** Index Terms **— Fixed points, \(\alpha\)-admissible maps, almost generalized \(\alpha\)-\(\psi\)-contractive maps.

MSC 2010 Codes — 47H10, 54H25.

I. INTRODUCTION

Recently several authors studied fixed point theorems in partially ordered sets endowed with a metric. Ran and Reurings [15] and Nieto and Lopez [14] proved Banach contraction principle in partially ordered sets endowed with a metric. Agarwal, El-Gebeily and O’Regan [1] have proved some fixed point results for monotone operators in ordered metric spaces endowed with a partial order using a weak generalized contraction type assumption. For more works in this line of research we refer [2, 3, 7, 11, 12, 13].

Throughout this paper we denote by \(\Psi\) the family of nondecreasing functions \(\psi : [0, \infty) \to [0, \infty)\) which satisfies \(\sum_{n=1}^{\infty} \psi^n(t) < \infty\) for each \(t > 0\) where \(\psi^n\) is the \(n\)-th iterate of \(\psi\).

** Remark 1.1:** Any function \(\psi \in \Psi\) satisfies \(\lim_{n \to \infty} \psi^n(t) = 0\), \(\psi(t) < t\) for any \(t > 0\) and \(\psi\) is continuous at \(0\).

Let \((X, \preceq)\) be a partially ordered set and \(T : X \to X\).

We say that \(T\) is nondecreasing with respect to \(\preceq\) if \(x, y \in X\), \(x \preceq y \Rightarrow Tx \preceq Ty\).

Recently, Samet, Vetro and Vetro [16] introduced a new concept namely \(\alpha\)-\(\psi\)-contractive mappings and proved the existence of fixed points of such mappings in metric space setting.

** Definition 1.2:** [16] Let \((X, d)\) be a metric space and \(T : X \to X\). We say that \(T\) is \(\alpha\)-\(\psi\)-contractive mapping if there exist two functions \(\alpha : X \times X \to [0, \infty)\) and \(\psi \in \Psi\) such that:

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y)) \quad \text{for all} \quad x, y \in X.
\]

** Definition 1.3:** [16] Let \((X, d)\) be a metric space, \(T : X \to X\) and \(\alpha : X \times X \to [0, \infty)\), \(\psi \in \Psi\). We say that \(T\) is \(\alpha\)-admissible if \(x, y \in X, \alpha(x, y) \geq 1 \Rightarrow \alpha(Tx, Ty) \geq 1\).

For examples on \(\alpha\)-admissible functions, we refer [15].

** Theorem 1.4:** [16] Let \((X, d)\) be a complete metric space and \(T : X \to X\). Suppose that there exist two functions \(\alpha : X \times X \to [0, \infty)\) and \(\psi \in \Psi\) such that:

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y)) \quad \text{for all} \quad x, y \in X.
\]

Also, assume that:
(i) \(T\) is \(\alpha\)-admissible;
(ii) there exists \(x_0 \in X\) such that \(\alpha(x_0, Tx_0) \geq 1\); and
(iii) \(T\) is continuous.

Then, \(T\) has a fixed point, \(i.e.,\), there exists \(u \in X\) such that \(Tu = u\).

** Theorem 1.5:** [16] Let \((X, d)\) be a complete metric space and \(T : X \to X\). Suppose that there exist two functions \(\alpha : X \times X \to [0, \infty)\) and \(\psi \in \Psi\) such that:

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y)) \quad \text{for all} \quad x, y \in X.
\]

Also, assume that:
(i) \(T\) is \(\alpha\)-admissible;
(ii) there exists \(x_0 \in X\) such that \(\alpha(x_0, Tx_0) \geq 1\); and
(iii) \(T\) is continuous.

Then, \(T\) has a fixed point, \(i.e.,\), there exists \(u \in X\) such that \(Tu = u\).

Recently, Karapinar and Samet [8] introduced generalized \(\alpha\)-\(\psi\)-contractive mappings and proved fixed point results.

** Definition 1.6:** [8] Let \((X, d)\) be a metric space and \(T : X \to X\) be a given mapping. We say that \(T\) is a generalized \(\alpha\)-\(\psi\)-contractive mapping if there exist two functions \(\alpha : X \times X \to [0, \infty)\) and \(\psi \in \Psi\) such that:

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(M(x, y)) \quad \text{for all} \quad x, y \in X
\]

where

\[
M(x, y) = \max\{d(x, y), \frac{(x, Tx)+d(y, Ty)}{2}, \frac{d(x, Ty)+d(y, Tx)}{2}\}
\]

** Theorem 1.7:** [8] Let \((X, d)\) be a complete metric space and \(T : X \to X\). Suppose that there exist two functions \(\alpha : X \times X \to [0, \infty)\) and \(\psi \in \Psi\) such that:

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(M(x, y)) \quad \text{for all} \quad x, y \in X
\]

where

\[
M(x, y) = \max\{d(x, y), \frac{(x, Tx)+d(y, Ty)}{2}, \frac{d(x, Ty)+d(y, Tx)}{2}\}
\]

Also, assume that the following conditions are satisfied:
(i) \(T\) is \(\alpha\)-admissible;
(ii) there exists \(x_0 \in X\) such that \(\alpha(x_0, Tx_0) \geq 1\); and
(iii) \(T\) is continuous.

Then there exists \(u \in X\) such that \(Tu = u\).

** Theorem 1.8:** [8] Let \((X, d)\) be a complete metric space and \(T : X \to X\). Suppose that there exist two functions \(\alpha : X \times X \to [0, \infty)\) and \(\psi \in \Psi\) such that:

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(M(x, y)) \quad \text{for all} \quad x, y \in X
\]

where
\[M(x, y) = \max\{d(x, y), \frac{(x, Tx)+d(y, Ty)}{2}, \frac{(x, Ty)+d(y, Tx)}{2}\}. \]

Also, assume that the following conditions are satisfied:

(i) \(T \) is \(\alpha \) - admissible;
(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \); and
(iii) if \(\{x_n\} \) is a sequence in \(X \) such that \(\alpha(x_n, x_{n+1}) \geq 1 \) for all \(n \) and \(x_n \rightarrow x \) as \(n \rightarrow \infty \), then there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\alpha(x_{n_k}, x) \geq 1 \) for all \(k \).

Then there exists \(u \in X \) such that \(Tu = u \).

For more works in this line of research we refer [9, 10].

In 2004, Berinde [5] introduced ‘weak contraction maps’ which are named as ‘almost contraction maps’ as a generalization of contraction maps and proved fixed point results in complete metric spaces.

Definition 1.9: [5] Let \((X, d)\) be a metric space. A map \(T : X \rightarrow X\) is called an ‘almost contraction’ if there exists a constant \(\delta \in (0, 1) \) and \(L \geq 0 \) such that

\[d(Tx, Ty) \leq \delta d(x, y) + Ld(y, Tx) \quad \text{for all} \quad x, y \in X. \]

In 2008, Babu, Sandhya and Kameshwari [4] modified the above definition by introducing ‘condition \(B\)’ and proved a fixed point theorem in complete metric spaces.

Definition 1.10: [4] Let \((X, d)\) be a metric space a map \(T : X \rightarrow X\) is said to satisfy ‘condition \(B\)’ if there exist a \(0 < \delta < 1 \) and \(L \geq 0 \) such that

\[d(Tx, Ty) \leq \delta d(x, y) + \min\{d(x, Tx), d(y, Ty)\}, \]

\[d(x, Ty), d(y, Tx) \quad \text{for all} \quad x, y \in X. \]

In 2011, Ciric, Abbas, Saadati and Hussain [6] proved the following fixed point results of an almost generalized contractive maps in ordered metric spaces.

Theorem 1.11: [6] Let \((X, \preceq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(T : X \rightarrow X\) be a strictly increasing continuous mapping with respect to \(\preceq \). Suppose that there exists \(\delta \in (0, 1) \) and \(L \geq 0 \) such that

\[d(Tx, Ty) \leq \delta M(x, y) + L\min\{d(x, Tx), d(y, Ty)\}, \]

\[d(x, Ty), d(y, Tx) \quad \text{for all} \quad x, y \in X \]

where

\[M(x, y) = \max\{d(x, y), (x, Tx), d(y, Ty)\}, \]

\[d(x, Ty), d(y, Tx) \]

If there exists \(x_0 \in X \) such that \(x_0 \preceq Tx_0 \) and for an increasing sequence \(\{x_n\} \) in \(X \) converging to \(x \in X \) we have \(x_n \preceq x \) for all \(n \). Then \(T \) has a fixed point in \(X \).

In this paper, we introduce almost generalized \(\alpha-\psi\)-contractive maps and prove the existence and uniqueness of fixed points in partially ordered sets endowed with a metric. Our results extend and generalize the results of Samet, Vetro and Vetro [16] and that of Karapinar and Samet [8]and Ciric, Abbas, Saadati and Hussain [6]. Furthermore, we provide examples in support of our results.

II. MAIN RESULTS

Theorem 2.1: Let \((X, \preceq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(T : X \rightarrow X\) be a nondecreasing map with respect to \(\preceq \). Suppose that there exist two functions \(\alpha : X \times X \rightarrow [0, \infty) \) and \(\psi \in \Psi \) and \(L \geq 0 \) such that

\[\alpha(x, y)d(Tx, Ty) \leq \psi(M(x, y)) + LN(x, y) \] (2.1.1)

for all \(x, y \in X \) with \(x \nless y \) where

\[M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty)+d(y, Tx)}{2}\} \]

and

\[N(x, y) = \min\{d(x, Ty), d(y, Tx)\}. \]

Also, assume that

(i) \(T \) is \(\alpha \) - admissible;
(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \) with \(x_0 \nless Tx_0 \); and
(iii) \(T \) is continuous.

Then \(T \) has a fixed point, i.e., there exists \(x^* \in X \) such that \(x^* = Tx^* \).

Proof. By (ii), suppose that there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \) with \(x_0 \nless Tx_0 \). We define a sequence \(\{x_n\} \) in \(X \) by \(x_{n+1} = Tx_n \) for \(n \in \{0, 1, 2, \ldots\} \). (2.1.2)

If \(x_n = x_{n+1} \) for some \(n \), then \(x_n = Tx_n \) and hence \(x_n \) is a fixed point of \(T \).

Now assume that \(d(x_n, x_{n+1}) > 0 \) for all \(n \). Since \(\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \geq 1 \), by (i) it follows that \(\alpha(Tx_0, x_1) = \alpha(x_1, x_2) \geq 1 \).

Inductively, we have

\[\alpha(x_n, x_{n+1}) \geq 1 \quad \text{for all} \quad n \geq 0. \] (2.1.3)

Since \(T \) is nondecreasing and \(x_0 \nless Tx_0 = x_1 \) we have

\[x_1 = Tx_0 \nless Tx_1 = x_2, \quad \text{i.e.,} \quad x_1 \nless x_2. \] (2.1.4)

Inductively we have \(x_n \nless x_{n+1} \) for all \(n \geq 0 \).

Hence we have \(x_0 \nless x_1 \nless x_2 \nless \cdots \nless x_n \nless x_{n+1} \nless \cdots \).

Now, from (2.1.1), (2.1.3) and (2.1.4) we have
\[d(x_n, x_{n+1}) = d(Tx_n, x_n) \]
\[\leq \alpha(x_{n-1}, x_n)d(Tx_{n-1}, Tx_n) \]
\[\leq \psi(d(M(x_{n-1}, x_n)) + LN(x_{n-1}, x_n) \] (2.1.5)

where

\[M(x_{n-1}, x_n) = \max\{d(x_{n-1}, x_n), d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), \frac{d(x_n, Tx_{n-1})+d(x_{n-1}, Tx_n)}{2}\}. \]
\[d(x, y) = \max \{d(x, y), d(x, Tx), d(y, Ty) \} \]

and

\[N(x, y) = \min \{d(x, Ty), d(y, Tx) \}. \]

Also, assume that

(i) \(T \) is \(\alpha^* \)-admissible;

(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \) with \(x_0 \leq Tx_0 \); and

(iii) if \(\{x_n\} \) is a nondecreasing sequence in \(X \) such that

\[x_n \to x^* \text{ then } x_n \leq x^*, \] also if \(\alpha(x_n, x_{n+1}) \geq 1 \), then

\[\alpha(x_n, x^*) \geq 1 \text{ for all } n. \]

Then \(T \) has a fixed point, i.e., there exists \(x^* \in X \) such that

\[x^* = Tx^*. \]

Proof. From the proof of the Theorem 2.1, the sequence \(\{x_n\} \) defined by \(x_{n+1} = Tx_n \) is Cauchy in \(X \). Since \(X \) is complete there exists \(x^* \in X \) such that \(x^* = \lim_{n \to \infty} x_n. \)

From \(\alpha(x_n, x_{n+1}) \geq 1 \) we have \(\alpha(x_n, x_*) \geq 1 \) for all \(n \) and also \(x_n \leq x^* \). Now, we show that \(Tx^* = x^* \). Assume that \(d(Tx^*, x^*) > 0 \).

On using (2.2.1), we have

\[d(x_{n+1}, Tx^*) = d(x_{n+1}, x^*) \leq \alpha(x_n, x^*) d(x_n, Tx^*) \]

\[\leq \psi(M(x_n, x^*)) + LN(x_n, x^*) \]

\[\leq \psi(M(x_n, x^*)) + LN(x_n, x^*) \]

and

\[N(x_n, x^*) = \min \{d(x_n, Tx^*), d(x^*, x_{n+1}) \}. \]

On taking limits as \(n \to \infty \) in (2.2.3) and (2.2.4) we have

\[\lim_{n \to \infty} M(x_n, x^*) = \lim_{n \to \infty} \max \{d(x_n, x^*), d(x_n, x_{n+1}) \}, \]

\[\lim_{n \to \infty} d(x^*, Tx^*) = \lim_{n \to \infty} \frac{d(x^*, Tx^*) + d(x^*, x_{n+1})}{2} \]

\[= \max \{0, d(x^*, Tx^*) \}, \]

\[= d(x^*, Tx^*). \]

and

\[\lim_{n \to \infty} N(x_n, x^*) = \lim_{n \to \infty} \min \{d(x_n, Tx^*), d(x^*, x_{n+1}) \}, \]

\[= \min \{d(x^*, Tx^*), 0 \} = 0. \]

Now, since

\[d(x^*, Tx^*) \leq M(x_n, x^*) \text{ and } \lim_{n \to \infty} M(x_n, x^*) = d(x^*, Tx^*) \]

we conclude that

\[M(x_n, x^*) \to d(x^*, Tx^*)^+ \text{ as } n \to \infty. \]

Since \(\psi \) satisfies the property \(\lim_{t \to t^*} \psi(t) < t \) for all \(t > 0 \), on taking limits as \(n \to \infty \) in (2.2.2), by using (2.2.5), (2.2.6) and (2.2.7), we have

\[d(x^*, Tx^*) \leq \lim_{n \to \infty} \psi(M(x_n, x^*)) < d(x^*, Tx^*), \]

a contradiction. Therefore \(d(x^*, Tx^*) = 0 \), i.e., \(x^* = Tx^* \).

In order to obtain the uniqueness of fixed points of almost generalized \(\alpha^*-\psi^* \)-contractive mappings we use the following hypotheses:
(H): for all \(x, y \in X \) there exists \(z \in X \) such that \(z \) is comparable to \(x \) and \(y \) and \(\alpha(x, z) \geq 1 \) and \(\alpha(y, z) \geq 1 \) and also \(z \leq Tz, \alpha(z, Tz) \geq 1 \). Moreover, we replace
\[
N(x, y) = \min \{d(x, Ty), d(y, Tx)\} \text{ of inequality (2.1.1(respectively (2.2.1)) by}
\]
\[
N'(x, y) = \min \{d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)\}.
\]

Theorem 2.3: Let \((X, \preceq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(T : X \to X \) be a nondecreasing map with respect to \(\preceq \). Suppose that there exist two functions \(\alpha : X \times X \to [0, \infty) \) and \(\psi \in \Psi \) with \(\lim_{r \to t^+} \psi(r) < t \) for all \(t > 0 \) and \(L \geq 0 \) such that
\[
\alpha(x, y)d(Tx, Ty) \leq \psi(M(x, y)) + LN'(x, y)
\]
for all \(x, y \in X \) with \(x \preceq y \)

and
\[
\alpha(x, y)d(Tx, Ty) = \max \{d(x, Ty), d(y, Ty), d(x, Ty), d(y,Tx)\}
\]

Also, assume that
(i) \(T \) is \(\alpha \)-admissible;
(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \)
with \(x_0 \leq Tx_0 \);
(iii) \(T \) is continuous; and
(iv) condition (H) holds.

Then \(T \) has a unique fixed point.

Proof. Since the inequality (2.3.1) implies the inequality (2.1.1), by the proof of Theorem 2.1 the set of fixed points of \(T \) is non-empty. Suppose that \(x^* \) and \(y^* \) are two distinct fixed points of \(T \). By our assumption (H), there exists \(z \in X \) such that \(z \) is comparable to \(x^* \) and \(y^* \) and \(\alpha(x^*, z) \geq 1 \) and \(\alpha(y^*, z) \geq 1 \). Now, put \(z = z_0 \) and choose \(z_1 \in X \) such that \(z_1 = Tx_0 \).

We define sequence \(\{z_n\} \) in \(X \) by \(z_{n+1} = Tz_n \) for all \(n \geq 0 \). Since \(z \) is comparable to \(x^* \) and \(y^* \) it follows that \(x^* \preceq z_n \) and \(y^* \preceq z_n \). Inductively, we can show that \(x^* \preceq z_n \) and \(y^* \preceq z_n \) (2.3.2)
for all \(n \geq 1 \).

Since \(\alpha(x^*, z) \geq 1 \) and \(\alpha(y^*, z) \geq 1 \) and \(T \) is \(\alpha \)-admissible we have
\[
\alpha(Tx^*, Tz) = \alpha(x^*, z_1) \geq 1 \text{ and } \alpha(Ty^*, Tz) = \alpha(y^*, z_1) \geq 1.
\]
Inductively, we can show that
\[
\alpha(x^*, z_n) \geq 1 \text{ and } \alpha(y^*, z_n) \geq 1.
\]
Now, on taking \(x = x^* \), \(y = z_n \) and using (2.3.2) and (2.3.3) in (2.3.1), we have
\[
d(x^*, z_{n+1}) = d(Tx^*, Tz_n) \leq \alpha(x^*, z_n)d(Tx^*, Tz_n)
\]
\[
\leq \psi(M(x^*, z_n)) + LN(x^*, z_n)
\]
where
\[
M(x^*, z_n) = \max \{d(x^*, z_n), d(x^*, Tx^*), d(z_n, Tz_n),
\]
and
\[
N'(x^*, z_n) = \min \{d(x^*, Tx^*), d(z_n, z_{n+1}), d(x^*, z_{n+1}),
\]
\[
d(z_n, x^*)\}
\]
\[
= \max \{d(x^*, z_n), d(z_n, z_{n+1}), d(x^*, z_{n+1}),
\]
\[
d(z_n, x^*)\}
\]
\[
\leq \max \{d(x^*, z_n), d(z_n, z_{n+1}), d(x^*, z_{n+1}),
\]
\[
d(z_n, x^*)\}
\]
\[
= \min \{0, d(z_n, z_{n+1}), d(x^*, z_{n+1}),
\]
\[
d(z_n, x^*)\} = 0.
\]
Thus by the monotonicity of \(\psi \) we have
\[
d(x^*, z_{n+1}) \leq \psi(\max \{d(x^*, z_n), d(z_n, z_{n+1}), d(x^*, z_{n+1})\}).
\]
We assume without loss of generality that \(M(x^*, z_n) > 0 \) for all \(n \). Now, we consider the following three cases:

Case(1): \(\max \{d(x^*, z_n), d(x^*, z_{n+1}), d(z_n, z_{n+1})\} = d(x^*, z_{n+1}). \)

In this case, we have
\[
d(x^*, z_{n+1}) \leq \psi(d(x^*, z_{n+1})) < d(x^*, z_{n+1}), \text{ a contradiction.}
\]

Case(2): \(\max \{d(x^*, z_n), d(x^*, z_{n+1}), d(z_n, z_{n+1})\} = d(x^*, z_{n}). \)

Then
\[
d(x^*, z_{n+1}) \leq \psi(d(x^*, z_{n})) \leq \psi^2(d(x^*, z_{n-1})
\]
\[
\leq \psi^3(d(x^*, z_{n-2}) \leq \cdots \leq \psi^n(d(x^*, z_{1}) \to 0
\]
as \(n \to \infty \).

Therefore, \(d(x^*, z_{n+1}) \to 0 \) as \(n \to \infty \).

Similarly, \(d(y^*, z_{n+1}) \to 0 \) as \(n \to \infty \). Hence \(x^* = y^* \).

Case(3): \(\max \{d(x^*, z_n), d(x^*, z_{n+1}), d(z_n, z_{n+1})\} = d(z_n, z_{n+1}). \)

In this case, we have
\[
d(x^*, z_{n+1}) \leq \psi(d(z_n, z_{n+1})) \leq \psi^2(d(z_{n-1}, z_n)
\]
\[
\leq \psi^3(d(z_{n-2}, z_{n-3}) \leq \cdots \leq \psi^n(d(z_{0}, z_{1}) \to 0 \text{ as } n \to \infty.
\]

Therefore, \(d(x^*, z_{n+1}) \to 0 \) as \(n \to \infty \).

Similarly, \(d(y^*, z_{n+1}) \to 0 \) as \(n \to \infty \). Hence \(x^* = y^* \).

Theorem 2.4: Let \((X, \preceq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(T : X \to X \) be a nondecreasing map with respect to \(\preceq \). Suppose that there exist two functions \(\alpha : X \times X \to [0, \infty) \) and \(\psi \in \Psi \) with \(\lim_{r \to t^+} \psi(r) < t \) for all \(t > 0 \) and \(L \geq 0 \) such that
\(\alpha(x, y) d(Tx, Ty) \leq \psi(M(x, y)) + LN'(x, y) \) (2.4.1)

for all \(x, y \in X \) with \(x \preceq y \)

where

\[
M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx) \}
\]

and

\[
N'(x, y) = \min\{d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx) \}.
\]

Also, assume that

(i) \(T \) is \(\alpha \)-admissible;

(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \)

with \(x_0 \preceq Tx_0 \);

(iii) if \(\{x_n\} \) is a nondecreasing sequence in \(X \) such that

\[x_n \rightarrow x^* \] then \(x_n \preceq x^* \), also if \(\alpha(x_n, x_{n+1}) \geq 1 \), then

\[\alpha(x_n, x^*) \geq 1 \] for all \(n \); and

(iv) condition (H) holds.

Then \(T \) has a unique fixed point.

Proof. Runs on the same lines as that of Theorem 2.3.

III. COROLLARIES AND EXAMPLES

Corollary 3.1: Let \((X, \preceq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(T : X \rightarrow X \) be a nondecreasing map with respect to \(\preceq \). Suppose that there exist two functions \(\alpha : X \times X \rightarrow [0, \infty) \) and \(\psi \in \Psi \) and \(L \geq 0 \) such that

\[
\alpha(x, y)d(Tx, Ty) \leq \psi(M'(x, y)) + LN(x, y)
\]

for all \(x, y \in X \) with \(x \preceq y \).

where

\[
M'(x, y) = \max\{d(x, y), d(x, Tx) + d(y, Ty), d(x, Ty) + d(y, Tx) \}
\]

and

\[
N(x, y) = \min\{d(x, Ty), d(y, Tx) \}.
\]

Also, assume that

(i) \(T \) is \(\alpha \)-admissible;

(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \) with \(x_0 \preceq Tx_0 \); and

(iii) \(T \) is continuous.

Then \(T \) has a fixed point, i.e., there exists \(x^* \in X \) such that

\[x^* = Tx^* \]

for all \(x, y \in X \) with \(x \preceq y \)

where

\[
M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx) \}, \quad \frac{d(x, Ty) + d(y, Tx)}{2}
\]

Also, assume that

(i) \(T \) is \(\alpha \)-admissible;

(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \) with \(x_0 \preceq Tx_0 \); and

(iii) \(T \) is continuous.

Then \(T \) has a fixed point, i.e., there exists \(x^* \in X \) such that

\[x^* = Tx^* \]

for all \(x, y \in X \) with \(x \preceq y \)

where

\[
M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx) \}, \quad \frac{d(x, Ty) + d(y, Tx)}{2}
\]

Also, assume that

(i) \(T \) is \(\alpha \)-admissible;

(ii) there exists \(x_0 \in X \) such that \(\alpha(x_0, Tx_0) \geq 1 \) with \(x_0 \preceq Tx_0 \); and

(iii) \(T \) is continuous.

Then \(T \) has a fixed point, i.e., there exists \(x^* \in X \) such that

\[x^* = Tx^* \]
Remark 3.7: Theorem 1.11 follows as a corollary to Theorem 2.1, since the inequality (1.1.1) follows from the inequality (2.1.1) with $\psi(t) = \delta t$, $\delta \in [0, 1)$, $t \geq 0$; and $\alpha(x, y) = 1$ for all $x, y \in X$.

By choosing $\psi(t) = kt$, $0 \leq k < 1$ in Theorem 2.2 we get the following:

Corollary 3.8: Let (X, \preceq) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T : X \to X$ be a nondecreasing map with respect to \preceq. Suppose that there exist a function $\alpha : X \times X \to [0, \infty)$, and $L \geq 0$ such that
\[\alpha(x, y)d(Tx, Ty) \leq kM(x, y) + LN(x, y)\]
for all $x, y \in X$ with $x \preceq y$ where
\[M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2}\}\]
and
\[N(x, y) = \min\{d(x, Ty), d(y, Tx)\} .\]

Also, assume that
(i) T is α-admissible;
(ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$ with $x_0 \preceq Tx_0$; and
(iii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \preceq x^*$ then $x_n \preceq x^*$, also if $\alpha(x_n, x_{n+1}) \geq 1$, then $\alpha(x_n, x^*) \geq 1$ for all n.

Then T has a fixed point, i.e., there exists $x^* \in X$ such that $x^* = Tx^*$.

Remark 3.9: Theorem 1.12 follows as a corollary to Theorem 2.2, since the inequality (1.1.1) follows from the inequality (2.2.1) with $\psi(t) = \delta t$, $\delta \in [0, 1)$, $t \geq 0$; and $\alpha(x, y) = 1$ for all $x, y \in X$.

The following result is an immediate consequence of Corollary 3.3.

Corollary 3.10: Let (X, \preceq) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T : X \to X$ be a nondecreasing map with respect to \preceq. Suppose that there exist a function $\alpha : X \times X \to [0, \infty)$, and $L \geq 0$ such that
\[\alpha(x, y)d(Tx, Ty) \leq kM(x, y) + LN(x, y)\]
for all $x, y \in X$ with $x \preceq y$.

Also, assume that
(i) T is α-admissible;
(ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$ with $x_0 \preceq Tx_0$; and
(iii) T is continuous.

Then T has a fixed point, i.e., there exists $x^* \in X$ such that $x^* = Tx^*$.

Remark 3.11: If we define $\alpha : X \times X \to [0, \infty)$ by $\alpha(x, y) = 1$ for all $x, y \in X$ in Corollary 3.10, we get Theorem 2.1 of [14].
\(\alpha(2, 4) d(T_2, T_4) = 2 \leq \psi(M(2, 4)) = \psi(2) \), which is absurd for any \(\psi \in \Psi \) and any \(\alpha \)-admissible function \(T \) with \(\alpha(2, 4) = 1 \).

Hence the inequality (2.1.1) fails to hold when \(L = 0 \) for any \(\alpha \)-admissible function \(T \) with \(\alpha(x, y) \geq 1 \), \(x, y \in X \) and \(\psi \in \Psi \). This example indicates the importance of \(L \) in the inequality (2.1.1) of Theorem 2.1.

Here, we observe that the inequality (1.11.1) fails to hold at \(x = 2 \) and \(y = 4 \) for any \(\delta \in [0, 1) \) and \(L \geq 0 \), for
\[
d(T_2, T_4) = 2 \leq 2\delta = \delta M(2, 4) + L_0 = \delta M(2, 4) + L\min\{d(2, T_2), d(4, T_4), d(2, T_4), d(4, T_2)\}
\]
which is absurd. Hence Theorem 1.11 is not applicable. So by Remark 3.7 and Example 3.12, it follows that Theorem 2.1 is a generalization of Theorem 1.11. Also, we observe that under the setting of this example, the inequalities (1.4.1) and (1.7.1) fail to hold at \(x = 2 \) and \(y = 4 \). Hence Theorem 1.4 and Theorem 1.7 are also not applicable. This phenomenon suggests that Theorem 2.1 is also a generalization of Theorem 1.4 and Theorem 1.7.

The following is also an example in support of Theorem 2.1.

Example 3.13: Let \(X = \{0, 1, 2, 3, 4\} \) with the usual metric.

We define a partial ordering on \(X \) as follows
\[
\preceq := \{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (2, 3)\}
\]
Then \((X, \preceq) \) is a partially ordered set.

Let \(A = \{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 4), (2, 0)\} \)
\(B = \{(1, 3), (2, 1), (3, 1), (3, 2), (3, 0), (3, 4)\} \)
\(C = \{(1, 0), (4, 0), (4, 1), (4, 2), (2, 4), (2, 3), (4, 3)\} \)
We define \(T : X \to X \) and \(\alpha : X \times X \to [0, \infty) \) by
\[
T_0 = T_1 = 0, T_2 = 3, T_3 = 4 \text{ and } T_4 = 4 \text{ and } \alpha(x, y) = \begin{cases} 3/2 & \text{if } (x, y) \in A \\ 2 & \text{if } (x, y) \in B \\ 0 & \text{if } (x, y) \in C. \end{cases}
\]

Then \(T \) is continuous, nondecreasing and \(\alpha \)-admissible. Moreover, we choose \(x_0 = 3 \in X \), clearly \(x_0 \preceq T x_0 \) and \(\alpha(x_0, T x_0) = \alpha(3, 4) = 2 \geq 1 \).

Now, we verify the inequality (2.1.1) by choosing \(\psi \in \Psi \) given by \(\psi(t) = \frac{2}{3} t \) for \(t \geq 0 \) and \(L = 2 \).

Case (1): \(x = 0 \) and \(y = 2 \).

In this case, \(\alpha(0, 2) d(T_0, T_2) = \frac{9}{2}, M(0, 2) = \frac{5}{2} \) and \(N(0, 2) = 2 \).

Hence, we have
\[
\alpha(0, 2) d(T_0, T_2) = \frac{9}{2} = \frac{9}{2} \leq \frac{5}{2} + 2.2 = \frac{17}{2}
\]
\[
= \psi(M(0, 2)) + LN(0, 2).
\]
Case (2): \(x = 0 \) and \(y = 3 \).

Then, \(\alpha(0, 3) d(T_0, T_3) = 6, M(0, 3) = \frac{7}{2} \) and \(N(0, 3) = 3 \).

Hence, we have
\[
\alpha(0, 3) d(T_0, T_3) = 6 \leq \frac{7}{2} + 2.3 = \frac{25}{4}
\]
\[
= \psi(M(0, 3)) + LN(0, 3).
\]
Case (3): \(x = 0 \) and \(y = 4 \).

In this case, \(\alpha(0, 4) d(T_0, T_4) = 6, M(0, 4) = 4 \) and \(N(0, 4) = 4 \). Therefore, we have
\[
\alpha(0, 4) d(T_0, T_4) = 6 \leq \frac{7}{3} + 2.4 = \frac{22}{3}
\]
\[
= \psi(M(0, 4)) + LN(0, 4).
\]
Case (4): \(x = 1 \) and \(y = 2 \).

Then, \(\alpha(1, 2) d(T_1, T_2) = \frac{9}{2}, M(1, 2) = 2 \) and \(N(1, 2) = 2 \).

Hence, we have
\[
\alpha(1, 2) d(T_1, T_2) = \frac{9}{2} = \frac{9}{2} \leq \frac{5}{2} + 2.2 = \frac{10}{2}
\]
\[
= \psi(M(1, 2)) + LN(1, 2).
\]
Case (5): \(x = 1 \) and \(y = 4 \).

In this case, \(\alpha(1, 4) d(T_1, T_4) = 6, M(1, 4) = 3 \) and \(N(1, 4) = 3 \). Hence we have
\[
\alpha(1, 4) d(T_1, T_4) = 6 \leq \frac{7}{3} + 2.3 = 8
\]
\[
= \psi(M(1, 4)) + LN(1, 4).
\]
Case (6): \(x = 2 \) and \(y = 4 \).

Then, \(\alpha(2, 4) d(T_2, T_4) = 0.1 = 0, M(2, 4) = 2 \) and \(N(2, 4) = 1 \).

Hence, we have
\[
\alpha(2, 4) d(T_2, T_4) = 0.1 = 0 = \psi(M(2, 4)) + LN(2, 4).
\]
Case (7): \(x = 3 \) and \(y = 4 \).

In this case, \(\alpha(3, 4) d(T_3, T_4) = 2.0 = 0, M(3, 4) = 1 \) and \(N(3, 4) = 0 \).

Hence, we have
\[
\alpha(3, 4) d(T_3, T_4) = 2.0 = 0 = \psi(M(3, 4)) + LN(3, 4).
\]
Case (8): \(x = 1 \) and \(y = 3 \).

Then, \(\alpha(1, 3) d(T_1, T_3) = 2.4 = 8, M(1, 3) = 3 \) and \(N(1, 3) = 3 \). Therefore, we have
\[
\alpha(1, 3) d(T_1, T_3) = 2.4 = 8 = \psi(M(1, 3)) + LN(1, 3).
\]
Case (9): \(x = 2 \) and \(y = 3 \).

In this case, \(\alpha(2, 3) d(T_2, T_3) = 0.1 = 0, M(2, 3) = 1 \) and \(N(2, 3) = 0 \).

Hence, we have
\[\alpha(2,3)d(T2,T3) = 0 \leq \frac{4}{3}1 + 2.0 = \frac{3}{2} = \psi(M(2,3)) + LN(2,3). \]

From all the cases considered above, \(T \) satisfies the inequality (2.1.1) and hence \(T \) satisfies all the hypotheses of Theorem 2.1 and \(T \) has two fixed points 0 and 4.

We now illustrate an example in support of Theorem 2.2.

Example 3.14: Let \(X = [0, 4] \) with the usual metric.

We define a partial order \(\preceq \) on \(X \) by

\[\preceq := \{(x, y) : x, y \in [0, 2), x = y \} \cup \{(x, y) : x, y \in [2, 4), x \leq y \}. \]

Then \((X, \preceq)\) is a partially ordered set.

We define \(T : X \rightarrow X \) and \(\alpha : X \times X \rightarrow [0, \infty) \) by

\[T(x) = \begin{cases}
\frac{2}{3} & \text{if } 0 \leq x < 1 \\
2 & \text{if } 1 \leq x < \frac{8}{3} \\
\frac{2}{3}x - 2 & \text{if } \frac{8}{3} \leq x \leq 4,
\end{cases} \]

\[\alpha(x, y) = \begin{cases}
1 & \text{if } 2 \leq x \leq 4 \text{ and } y = 4 \\
0 & \text{otherwise}.
\end{cases} \]

Here, we note that \(T \) is nonincreasing on \(X \) and not continuous at 1. Moreover, we choose \(x_0 = \frac{8}{3} \in X \), then

\[\alpha(x_0, Tx_0) = \alpha\left(\frac{8}{3}, 4\right) = 1 \text{ and } \frac{8}{3} \leq T\frac{8}{3}. \]

Now, we show that \(T \) is \(\alpha \)-admissible.

Case (1): \(2 \leq x < \frac{8}{3} \) and \(y = 4 \).

In this case, \(Tx = 2 \) and \(Ty = T4 = 4 \). Therefore, by the definition of \(\alpha \) we have \(\alpha(Tx, Ty) = \alpha(2, 4) = 1 \).

Case (2): \(x = \frac{8}{3} \) and \(y = 4 \).

Then, we have \(T\frac{8}{3} = 2 \) and \(T4 = 4 \) and

\[\alpha(Tx, Ty) = \alpha(2, 4) = 1. \]

Case (3): \(\frac{8}{3} \leq x \leq y = 4 \).

In this case, \(2 < Tx \leq 4 \) and \(Ty = T4 = 4 \). Hence, by the definition of \(\alpha \) we have \(\alpha(Tx, Ty) = \alpha(2, x, 4) = 1 \).

Therefore, \(T \) is \(\alpha \)-admissible.

Now, we verify the inequality (2.2.1) by choosing \(\psi \in \Psi \) given by \(\psi(t) = \frac{t}{2} \) for \(t \geq 0 \) and \(L = 1 \).

Case (1): \(2 \leq x < \frac{8}{3} \) and \(y = 4 \).

In this case, \(\alpha(x, y) = 1, Tx = 2, Ty = 4 \) and

\[\alpha(x, y)d(Tx, Ty) = 2, \]

\[M(x, y) = \max\{4 - x, x - 2, 0, \frac{6-x}{2}\} = \frac{6-x}{2} \text{ and} \]

\[N(x, y) = \min\{4 - x, 2\} = 4 - x. \]

Hence, we have

\[2 = \alpha(x, y)d(Tx, Ty) \leq \frac{1}{2} \frac{6-x}{2} + 1.4 - x = \psi(M(x, y)) + LN(x, y). \]

Case (2): \(\frac{8}{3} \leq x \leq 4 \) and \(y = 4 \).

Then, \(Tx = \frac{3}{2}x - 2 \) and \(Ty = T4 = 4 \) and \(\alpha(x, y) = 1 \).

\[\alpha(x, y)d(Tx, Ty) = 6 - \frac{3}{2}x, \]

\[M(x, y) = \max\{4 - x, 2 - \frac{3}{2}x, 0, \frac{20-5x}{4}\} = \frac{20-5x}{4} \text{ and} \]

\[N(x, y) = \min\{4 - x, 6 - \frac{3}{2}x\} = 4 - x. \]

Hence, we have

\[6 - \frac{3}{2}x = \alpha(x, y)d(Tx, Ty) \leq 1 + 1.4 - x = \psi(M(x, y)) + LN(x, y). \]

From all the cases considered above, \(T \) satisfies the inequality (2.2.1) and hence \(T \) satisfies all the hypotheses of Theorem 2.2 and \(T \) has three fixed points 0, 2 and 4.

Here, we note that if \(L = 0 \) in the inequality (2.2.1), then for \(x = 2 \) and \(y = 4 \) we have \(\alpha(2, 4)d(T2, T4) = 2 < \psi(M(2, 4)) = \psi(2) \), which is absurd for any \(\alpha \)-admissible function \(T \) with \(\alpha(2,4) \geq 1 \), and any \(\psi \in \Psi \). Hence the inequality (2.2.1) fails to hold when \(L = 0 \) for any \(\alpha \)-admissible function \(T \) with \(\alpha(x,y) \geq 1, x, y \in X \) and \(\psi \in \Psi \). This example illustrates the importance of \(L \) in Theorem 2.2.

Here, we observe that the inequality (1.1.2.1) fails to hold at \(x = 2 \) and \(y = 4 \) for any \(\delta \in [0, 1] \) and \(L \geq 0 \), for

\[d(T2,T4) = 2 \leq 2\delta = \delta M(2,4) + L,0 = \delta M(2,4) + L \min\{d(2,T2),d(4,T4),d(2,T4),d(4,T2)\} \]

which is absurd. Hence Theorem 1.12 is not applicable. So by Remark 3.9 and Example 3.14, it follows that Theorem 2.2 is a generalization of Theorem 1.12.

In the following, we give an example in support of Theorem 2.3.

Example 3.15: Let \(X = \{0, 1, 2, 3, 4\} \) with the usual metric.

We define a partial ordering on \(X \) as follows

\[\preceq := \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 4)\}. \]

Then \((X, \preceq)\) a partially ordered set.

Let \(A = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 1), (0, 2), (0, 3), (2, 1), (4, 1), (1, 0), (2, 0), (3, 0), (4, 0)\}. \)

We define \(T : X \rightarrow X \) and \(\alpha : X \times X \rightarrow [0, \infty) \) by

\[T0 = T1 = T3 = 1, T2 = 4 \text{ and } T4 = 2. \]

\[\alpha(x, y) = \begin{cases}
1 & \text{if } (x, y) \in A \\
0 & \text{if } (x, y) \in X \times X \setminus A.
\end{cases} \]

Then \(T \) is continuous, nondecreasing and \(\alpha \)-admissible.

We choose \(x_0 = 1 \in X \), then \(x_0 \preceq Tx_0 \) and
\[\alpha(x_0, Tx_0) = \alpha(1, 0) = 1. \] Also we choose \(z = 0 \in X \), then \(z \) is comparable with every \(x, y \in X \) and \(\alpha(z, Tz) = 1 \) and \(z \preceq Tz \).

Now, we verify the inequality (2.3.1) by choosing \(\psi \in \Psi \) given by \(\psi(t) = \frac{2}{3}t \) for \(t \geq 0 \) and \(L = 3 \) for comparable elements in \(X \).

We check only at \(x = 0 \) and \(y = 2 \).

In this case, \(\alpha(0, 2)d(T0, T2) = 3 \), \(M(0, 2) = \frac{5}{2} \) and \(N(0, 2) = 1 \).

Hence, we have
\[
\alpha(0, 2)d(T0, T2) = 3 \leq \frac{5}{2} + 3.1 = \frac{14}{3} = \psi(M(0, 2)) + LN(0, 2).
\]

At all the remaining points the inequality (2.3.1) holds trivially.

Hence \(T \) satisfies the inequality (2.3.1) and hence all the hypotheses of Theorem 2.3 are satisfied and \(T \) has a unique fixed point 1.

IV. CONCLUSION

In this paper, we proved the existence of fixed points for almost generalized \(\alpha-\psi \)-contractive maps (Theorem 2.1 and Theorem 2.2) in partially ordered sets endowed with a metric.

(i) Example 3.12 and Remark 3.7 suggest that Theorem 2.1 is a generalization of Theorem 1.11; Also, Theorem 2.1 is a generalization of Theorem 1.4 and Theorem 1.7.

(ii) Example 3.14 and Remark 3.9 suggest that Theorem 2.2 is a generalization of Theorem 1.12.

Uniqueness of the fixed points is also studied. Our results generalize the results of Samet, Vetro and Vetro [16], Ciric, Abbas, Saadati and Hussain [6] and Karapinar and Samet [8].

REFERENCES

