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Bound Lengths Based On Empirical Bayesian
Scenario For A Repairable System

Gyan Prakash

Abstract—The present article studying the properties of Bayes other components stay in the working state with adjusted
prediction bound lengths of a repairable model under empirical rates of failure. After repairing, a component works as new
Bayesian approach on progressive censored data. The prediction o jis actual lifetime is the same as initially. If the failed

length of bo.unds has. been obtained ungjer the a§sumption that, t] ir bef h t fails(thel

the repair failure rate increases monotonically as time parameter COMPONENLIS repair belore another componential s( )_
increases. components recover their initial lifetime. The lifetime and time
of repair are independent.

Prakash & Kumar [6] studied the behavior of Bayes pre-
diction length of interval under Two-Sample Bayes prediction
MSC 2010 Codes — 62A15, 62F15, 65C05. scenario based on a repairable system recently. The right item
censoring criterion is the first time introduced by them in
repairable model. The present article extends the work of
Prakash & Kumar [6] by introducing the Progressive censoring
) ) - criterion in such repairable model.

T HE censoring arises when exact lifetimes are only par-The opjective of present article is to predict the nature
tially known and it is much useful in life testing experi-of future behavior of an observation when sufficient infor-
ments for time and cost restrictions. The progressive censorigtion about past and the present behavior of an event
appears to be a great importance in planned duration exp&f-an observation is known or given. In present paper an
iments in reliability studies. In many industrial experimentgnpirical Bayesian statistical analysis is used for predicting
involving lifetimes of machines or units, experiments have i@e future ordered statistic from considered repairable model.

be terminated early and the number of failures must be limiteghqer progressive ordered data, One-Sample Bayes prediction
for various reasons. scenario is considered for studying the properties of the bound

The planning of experiments with the aim of reducing tOt%ngths.
duration of experiment or number of failures leads naturally t0 gherda & Boushaba [1] analyzed a repairable system with
Type-I & Type-ll censoring scheme. The main disadvantag&yre and repair times arbitrarily distributed. Soliman et al.
of above censoring schemes is that they do not allow remoy@| resented some Bayesian inference and prediction of Burr
of units at points other than the termination point of an expeftyne_x|| distribution under progressive first failure censored
ment. For such lifetime studies Progressively Type-I| censorggmp“ng Some Bayesian and frequentist prediction under
sampling is an important_ method. Live unites remqved earbfogressive censoring was discussed by Soliman et al. [8].
on, can be readily used in others test, thereby saving cosi\ighmoud et al. [2] studied about the Bayesian inference and
experimenter and a compromise can be achieved between fp&jiction of generalized Pareto distribution under progressive
consumption and the observation of some extreme values. ;s fajlure censored data. Mohie EI-Din et al. [3] presented

In many applications, technical systems or sub-systems hayyistical inference and prediction for the inverse Weibull
k —out —of —n structure, which has investigated extensivelyistripution based on record data. Some Bayes prediction
in the literature. For such a systen_m the system consisting of,5nds lengths for right ordered Pareto Type-ll data was
components or subsystems, of which ohlf< n > 0) need to gptained by Prakash [4]. Recently, Prakash [5], presented some
be functioning. The: —out —of —n model is commonly used gayes estimation under progressively censored Rayleigh data.
model in reliability theory. The system includes multi-display-ew most recent studies are discussed above. However, a great
system in cockpits, the multi-engine system in an airplane, agga) of literature is available on predictive inference of the

the multipurpose system in a hydraulic control system. In thi§iyre failure distribution under progressive censoring.
model, the failure of any component of the system does not

influence the components still at work.

The system(n — 1) — out — of —n : G is consists with
n components and works if and only {f, — 1) components  The considered repairable model by Prakash & Kumar [6]
among then work simultaneously. System and each of itg based on following assumptions:
components can in only one of two states: working or failed. The system consists witw units and having a repair
When a component fails, it kept under the repair and thgcility. Initially one unit starts operating and the remaining

_ _ _ n — 1) units are kept as inactive standbys. As soon as a
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|I. INTRODUCTION

Il. DESCRIPTIONOF THE MODEL UNDER STUDY
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Serves (FCFS), it is always open, and the repairs are perfect

with negligible switch over time. Simplifying (2), get the joint probability density function of
order statistics as

The failure time distribution of online units and repair

time distribution of units under repair are assume general, Xt Xeominseoo X (210) = Crm A (236) 0™
|ndeper_1de_nt qf each other, and both are increasing failure rate ceap (=0T (230)) ; 3)
(IFR) distributions. The state of the system is defined by the

number of non-operative units in the system at tite 0). Wwhere A, (z;0) = [[;*,; xf51 and Ty, (z;6) =

Further, the state is called the down state of the system. 1 3" (1+ R;) :c5i).
Two-parameter Gamma distribution (Prakash & Kumar [6]
The system is observed under an inspection policy whegeconsidered here as a conjugate prior for the paranteter
inspection is made at the completion of a repair, if it starisaving probability density function
at the beginning of a repair. This leads us to a situation
where separate observations on the units performance and on 7(0) o 6 texp (—B86);a>0,8>0,0>0. (4)
repair facility are not feasible. Thus, available records are the S . )
number of failures that occurred in the time interval between Now, the posterior distribution is defined and obtained as
two repair epochs i.e., the time instant at which a repair fx X X (z]6) - ©(0)
Completes ﬂ_* (9|£) — T:m:ins<32:m:ny s mim:n \Z
> . Jo FXtimen Xoomen oo X (Z]0) - 7(6)dO
Following Prakash & Kumar [6], the failure raj€t); ¢ > 0
for such repairable system is given as follows:

Omexp (—0T, (z;0)) - 0 texp (—30)
p(t) =010 >0,t> 0,0 > 1. 1) X T 6meap (=0T, (z;9)) - 6°Lexp (—B30) db
. , . . mto
id:rftticﬁ jzﬁ)sp;se)?n exp;?nr;reent I|n wgmhndelgendent and o (Ola) = (Ty, (z,6)) pmta—1
1, X0, ., X, placed on a life test at the T(m + )
beginning time and firstn; (1 < m < n) failure times are
observed. At the time of each failure occurring prior to the -exp (=075, (z;9)) (5)

termination point, one or more surviving units are removeghere7* (z,8) = Tpn (2, 6) + B.
from the test. The experiment is terminated at time of the ma =
m*" failure, and all remaining surviving units are removed

from the test. . Il _
Letz(y < z(z) < ... < 2, are the lifetimes of completely The method of maximum likelihood (ML) estimate and
observed units to fail and?;, Ry, ..., Rp; (m < n) are the method of moments are two best techniques for estimating

numbers of units withdrawn at these failure times respectivefe hyper-parameters. Based on empirical Bayesian approach,

Here, Ry, Ro, ..., Ryn; (m < n) all are predefined integersunknown hyper-parametgris estimated by the method of ML
follows the relation (see Prakash [5] for details) estimate when hyper-parameteiis considered to be known.

Under empirical Bayesian approach, we begin with
Bayesian model: Since,
Z R; =n—m.

Ill. EMPIRICAL BAYESIAN CRITERION

j=1 |0~ f(2;0) 51 =1,2,...,n

The joint probability density function of order statistics basegn
on progressively Type-Il censoring scheme is defined as 018, o ~ 7(6).

m

FX ot X X @10) = Con [ -

i=1

 (wwi0)\ "™
f (f%‘);(’)( oL ) )

As all the units have identicaf(-) distribution, therefore
marginal density ofc, say f(z), can be obtained as

flx) = /fxlzmm,Xzzmm,...,xmzmm (z[0) - m(0)do

T(; CinApm (2;0) B¢
p(ra) S ) = r(%) )8 L + )
where f(-) be the probability density function of considered
model andp(-) be the failure rate of the considered model. (T @;9))*(’”“‘), (6)

The progressive normalizing constati, is defined as _ o ) )
The maximum likelihood estimate of based onf(x) is

Cn=n(n—Ri—1)(n—R;— R2—2) ... given as N
BurL = ETm (z;9). (7)

m—1
n+1-— Z Rj—m|. Now, the empirical posterior distribution for the parameter
j=1 is obtained by replacing hyper-parametdy its ML estimate.
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Hence, the empirical posterior distribution is obtainednfro  Solving (13), the lower and upper empirical Bayes predic-

equation (5) as tion bounds for the future random observatiBnare given
* (Fn@)™™" ” s o) y
. and
-exp (—9Tm (3 5)) ; 8 ) 1
lopc = (5Tm (z;9) w**) ; (15)

whereT), (2;6) = T, (2:6) (1 + 2)
* T A ok —r —A
wherew* = ( (&42) " — 1) and w** = ((17) — 1).
Hence, the empirical Bayes prediction bound lengths under
One-Sided and Central coverage are obtained as

IV. BAYES PREDICTION BOUND LENGTHSUNDER
ONESAMPLE PLAN

Let z(1), 2y, .-, T(m) D€ firstm components of the ob-
served ordered items from the considered repairable model of Ip =l —lE
sizen. If Y = (y(1),y(2), ---» Y(s)) be the another independent
ordered random sample of sizefrom same model of the and
future observations. Then the Bayes predicative density of
future observatiort” is denoted byh (y|z) and obtained by
simplifying following relation

Igc = lagc — hiEC-

Table 1: Censoring Scheme for Different Values ofn

h (ylz) o /f (y;0) - 75 (O]z) db; Case | m R;Vi=1,2,..m
o 1 |05 12101
) mta 2 |10 1003001001
_ . 6—1
:ih@@)—0n+a)@hegﬁ) Y 3 [15]102001020010012

| (Tm (:6) + y;) T

The Bayes predictive density function expresses the plausi- .
bility of Y given data and the prior information regarding the We illustrate the procedure by presenting a complete anal-

parameter. Now, the Bayes predictive bounds with coverayj@s under a simulated data set. The random samples are

V. NUMERICAL ANALYSIS

(1 —7) is defined for future observatiori as generated as follows:
Generates the values of paramet@r through prior
Pr(lip <Y <lbg)=1-r, density 7(f) for a given set of prior parameters(=

8‘50’ 1.00,2.50,5.00) and corresponding values of prior pa-
rameterf is estimated by its ML estimatg,,..
Using above generated values @fwith §(= 1); a set of
bo, 000 random samples of size = 20 has been drawn from
underlying model. For selected values of progressive censored
sampling schemen(= 05,10, 15) and level of significance

Pr(Y <lhg)= T _pr (Y >1ip). (10) 7(= 99%,95%,90%); the empirical Bayes prediction lengths

2 of bounds are obtained and presents them in Table 2. Table 1
Solving (10), the lower and upper empirical Bayes predishows the different progressive censoring scheme.

Herel;r andi,g are the lower and upper Bayes predictio
bounds for random variabl&”, and (1 — 7) is called the
confidence prediction coefficient. The One-sidéd(1 — )%
Bayes prediction bounds are obtained by solving followin
equality

tion bounds fory” are obtain as It is observed from the table that, the lengths of empirical
. N\ 5 Bayes prediction bounds for both cases tend to be wider
hp = (5Tm (z;0) 7 ) (11)  as progressive censoring schemeincreases and changed,

when other parametric values are fixed. The length of bounds
) 1 expended also, when hyper-parametencreases.
l2p = (5Tm (:9) T**) ; (12) It is also seen that the length of bounds tends to be closer
when the level of significance decreases for both cases when
other parametric values are fixed.

However, it is remarkable that the central coverage empirical
Bayes prediction length of bounds are wider as compare to
one-sided empirical Bayes prediction length of bounds for
higher significance level. F&X0% significance andv > 2.50,

—r the one-sided prediction length of bounds is wider as compare
5 =Pr(Y 2lpc).  (13) to central coverage criterion.

and

wherer* = (7)™ A — 1, 7 = (R) ™ =1, A= (m + )7},
n=(1-3%) adn=(3).

Similarly, the central coveragd007% Bayes prediction
bounds for the future observatidri are obtained similarly
by solving following equality

1
Pr(Y <ligc) =
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(1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

Table 2: Empirical Bayes Prediction Bound Length of Intervals under One-Sample Technique

n =20 One - Sided Central Coverage

m | (@)l 17— 90% 95% 99% 90% 95% 99%

0.50 0.4971| 0.5777 | 0.6981 | 1.0079 | 1.1854 | 1.3243
05 1.00 0.6158 | 0.6278 | 0.7147 | 1.0146 | 1.2019 | 1.4715
2.50 1.0696 | 1.1808 | 1.4087 | 1.0401 | 1.2307 | 1.8504
5.00 1.3324 | 1.3625| 1.6472| 1.0575| 1.3753 | 1.9805
0.50 0.6331| 0.6974 | 0.7718 | 1.0094 | 1.1942 | 1.3932
10 1.00 0.8079 | 0.8934 | 0.9884 | 1.0417 | 1.2513 | 1.5551
2.50 1.2181 | 1.2537 | 1.6219 | 1.0752 | 1.2817 | 1.8622
5.00 1.3813 | 1.4154 | 1.8306 | 1.1278 | 1.5173| 1.9829
0.50 0.7112] 0.8487 | 0.8729 | 1.0133| 1.2541 | 1.4239
15 1.00 0.8285| 0.9548 | 1.0079 | 1.0933 | 1.2936 | 1.5928
2.50 1.2275| 1.4235| 1.714 | 1.1196 | 1.5437 | 1.8799
5.00 1.4075| 1.6519 | 1.8889 | 1.2565| 1.6853 | 1.9894
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