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Abstract—The present article studying the properties of Bayes
prediction bound lengths of a repairable model under empirical
Bayesian approach on progressive censored data. The prediction
length of bounds has been obtained under the assumption that,
the repair failure rate increases monotonically as time parameter
increases.
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I. I NTRODUCTION

T HE censoring arises when exact lifetimes are only par-
tially known and it is much useful in life testing experi-

ments for time and cost restrictions. The progressive censoring
appears to be a great importance in planned duration exper-
iments in reliability studies. In many industrial experiments
involving lifetimes of machines or units, experiments have to
be terminated early and the number of failures must be limited
for various reasons.

The planning of experiments with the aim of reducing total
duration of experiment or number of failures leads naturally to
Type-I & Type-II censoring scheme. The main disadvantage
of above censoring schemes is that they do not allow removal
of units at points other than the termination point of an experi-
ment. For such lifetime studies Progressively Type-II censored
sampling is an important method. Live unites removed early
on, can be readily used in others test, thereby saving cost to
experimenter and a compromise can be achieved between time
consumption and the observation of some extreme values.

In many applications, technical systems or sub-systems have
k− out− of −n structure, which has investigated extensively
in the literature. For such a system, the system consisting ofn

components or subsystems, of which onlyk (≤ n > 0) need to
be functioning. Thek−out−of−n model is commonly used
model in reliability theory. The system includes multi-display
system in cockpits, the multi-engine system in an airplane, and
the multipurpose system in a hydraulic control system. In this
model, the failure of any component of the system does not
influence the components still at work.

The system(n − 1) − out − of − n : G is consists with
n components and works if and only if(n − 1) components
among then work simultaneously. System and each of its
components can in only one of two states: working or failed.
When a component fails, it kept under the repair and the
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other components stay in the working state with adjusted
rates of failure. After repairing, a component works as new
and its actual lifetime is the same as initially. If the failed
component is repair before another component fails, the(n−1)
components recover their initial lifetime. The lifetime and time
of repair are independent.

Prakash & Kumar [6] studied the behavior of Bayes pre-
diction length of interval under Two-Sample Bayes prediction
scenario based on a repairable system recently. The right item
censoring criterion is the first time introduced by them in
repairable model. The present article extends the work of
Prakash & Kumar [6] by introducing the Progressive censoring
criterion in such repairable model.

The objective of present article is to predict the nature
of future behavior of an observation when sufficient infor-
mation about past and the present behavior of an event
or an observation is known or given. In present paper an
empirical Bayesian statistical analysis is used for predicting
the future ordered statistic from considered repairable model.
Under progressive ordered data, One-Sample Bayes prediction
scenario is considered for studying the properties of the bound
lengths.

Gherda & Boushaba [1] analyzed a repairable system with
failure and repair times arbitrarily distributed. Soliman et al.
[7] presented some Bayesian inference and prediction of Burr
Type-XII distribution under progressive first failure censored
sampling. Some Bayesian and frequentist prediction under
progressive censoring was discussed by Soliman et al. [8].
Mahmoud et al. [2] studied about the Bayesian inference and
prediction of generalized Pareto distribution under progressive
first-failure censored data. Mohie El-Din et al. [3] presented
statistical inference and prediction for the inverse Weibull
distribution based on record data. Some Bayes prediction
bounds lengths for right ordered Pareto Type-II data was
obtained by Prakash [4]. Recently, Prakash [5], presented some
Bayes estimation under progressively censored Rayleigh data.
Few most recent studies are discussed above. However, a great
deal of literature is available on predictive inference of the
future failure distribution under progressive censoring.

II. D ESCRIPTIONOF THE MODEL UNDER STUDY

The considered repairable model by Prakash & Kumar [6]
is based on following assumptions:

The system consists withn units and having a repair
facility. Initially one unit starts operating and the remaining
(n − 1) units are kept as inactive standbys. As soon as a
unit fails, it goes to repair and a standby unit is put on the
operation. The repair policy is based on First Come First
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Serves (FCFS), it is always open, and the repairs are perfect
with negligible switch over time.

The failure time distribution of online units and repair
time distribution of units under repair are assume general,
independent of each other, and both are increasing failure rate
(IFR) distributions. The state of the system is defined by the
number of non-operative units in the system at timet(> 0).
Further, the staten is called the down state of the system.

The system is observed under an inspection policy where
inspection is made at the completion of a repair, if it starts
at the beginning of a repair. This leads us to a situation
where separate observations on the units performance and on
repair facility are not feasible. Thus, available records are the
number of failures that occurred in the time interval between
two repair epochs i.e., the time instant at which a repair
completes.

Following Prakash & Kumar [6], the failure rateρ(t); t > 0
for such repairable system is given as follows:

ρ(t) = θtδ−1; θ > 0, t > 0, δ > 1. (1)

Let us suppose an experiment in whichn independent and
identical unitsX1, X2, ..., Xn are placed on a life test at the
beginning time and firstm; (1 ≤ m ≤ n) failure times are
observed. At the time of each failure occurring prior to the
termination point, one or more surviving units are removed
from the test. The experiment is terminated at time of the
mth failure, and all remaining surviving units are removed
from the test.

Let x(1) ≤ x(2) ≤ ... ≤ x(m) are the lifetimes of completely
observed units to fail andR1, R2, ..., Rm; (m ≤ n) are the
numbers of units withdrawn at these failure times respectively.
Here, R1, R2, ..., Rm; (m ≤ n) all are predefined integers
follows the relation (see Prakash [5] for details)

m
∑

j=1

Rj = n−m.

The joint probability density function of order statistics based
on progressively Type-II censoring scheme is defined as

fX1:m:n,X2:m:n,,Xm:m:n
(x|θ) = Cm

m
∏

i=1

·

f
(

x(i); θ
)

(

f
(

x(i); θ
)

ρ
(

x(i)

)

)Ri

(2)

wheref(·) be the probability density function of considered
model andρ(·) be the failure rate of the considered model.
The progressive normalizing constantCm is defined as

Cm = n (n−R1 − 1) (n−R1 −R2 − 2) ...



n+ 1−

m−1
∑

j=1

Rj −m



 .

Simplifying (2), get the joint probability density function of
order statistics as

fX1:m:n,X2:m:n,...,Xm:m:n
(x|θ) = CmAm (x; δ) θm

· exp (−θTm (x; δ)) ; (3)

where Am (x; δ) =
∏m

i=1 x
δ−1
(i) and Tm (x; δ) =

1
δ

∑m
i=1 (1 + Ri)x

δ
(i).

Two-parameter Gamma distribution (Prakash & Kumar [6]
is considered here as a conjugate prior for the parameterθ,
having probability density function

π(θ) ∝ θα−1exp (−βθ) ;α > 0, β > 0, θ > 0. (4)

Now, the posterior distribution is defined and obtained as

π∗ (θ|x) =
fX1:m:n,X2:m:n,...,Xm:m:n

(x|θ) · π(θ)
∫

θ
fX1:m:n,X2:m:n,...,Xm:m:n

(x|θ) · π(θ)dθ

∝
θmexp (−θTm (x; δ)) · θα−1exp (−βθ)

∫

θ
θmexp (−θTm (x; δ)) · θα−1exp (−βθ) dθ

⇒ π∗ (θ|x) =
(T ∗

m (x, δ))
m+α

Γ(m+ α)
θm+α−1

· exp (−θT ∗

m (x; δ)) (5)

whereT ∗

m (x, δ) = Tm (x, δ) + β.

III. E MPIRICAL BAYESIAN CRITERION

The method of maximum likelihood (ML) estimate and
method of moments are two best techniques for estimating
the hyper-parameters. Based on empirical Bayesian approach,
unknown hyper-parameterβ is estimated by the method of ML
estimate when hyper-parameterα is considered to be known.

Under empirical Bayesian approach, we begin with
Bayesian model: Since,

x(i)|θ ∼ f (x; θ) ; i = 1, 2, ..., n

and
θ|β, α ∼ π(θ).

As all the units have identicalf(·) distribution, therefore
marginal density ofx, sayf(x), can be obtained as

f(x) =

∫

fX1:m:n,X2:m:n,...,Xm:m:n
(x|θ) · π(θ)dθ

⇒ f(x) =
CmAm (x; θ)βα

Γ(α)
Γ(m+ α)·

(T ∗

m (x; θ))−(m+α)
. (6)

The maximum likelihood estimate ofβ based onf(x) is
given as

β̂ML =
α

m
Tm (x; δ) . (7)

Now, the empirical posterior distribution for the parameterθ

is obtained by replacing hyper-parameterβ by its ML estimate.
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Hence, the empirical posterior distribution is obtained from
equation (5) as

π∗

E (θ|x) =

(

T̂m (x; δ)
)m+α

Γ(m+ α)
θm+α−1

· exp
(

−θT̂m (x; δ)
)

; (8)

whereT̂m (x; δ) = Tm (x; δ)
(

1 + α
m

)

IV. BAYES PREDICTION BOUND LENGTHSUNDER

ONESAMPLE PLAN

Let x(1), x(2), ..., x(m) be first m components of the ob-
served ordered items from the considered repairable model of
sizen. If Y =

(

y(1), y(2), ..., y(s)
)

be the another independent
ordered random sample of sizes from same model of the
future observations. Then the Bayes predicative density of
future observationY is denoted byh (y|x) and obtained by
simplifying following relation

h (y|x) ∝

∫

θ

f (y; θ) · π∗

E (θ|x) dθ;

⇒ h (y|x) = (m+ α)
(

T̂m (x; δ)
)m+α

yδ−1

·

(

T̂m (x; δ) +
yδ

δ

)−m−α−1

. (9)

The Bayes predictive density function expresses the plausi-
bility of Y given data and the prior information regarding the
parameter. Now, the Bayes predictive bounds with coverage
(1− τ) is defined for future observationY as

Pr (l1E ≤ Y ≤ l2E) = 1− τ,

Here l1E andl2E are the lower and upper Bayes prediction
bounds for random variableY, and (1 − τ) is called the
confidence prediction coefficient. The One-sided100(1− τ)%
Bayes prediction bounds are obtained by solving following
equality

Pr (Y ≤ l1E) =
τ

2
= Pr (Y ≥ l1E) . (10)

Solving (10), the lower and upper empirical Bayes predic-
tion bounds forY are obtain as

l1E =
(

δT̂m (x; δ) τ∗
)

1

δ

(11)

and

l2E =
(

δT̂m (x; δ) τ∗∗
)

1

δ

; (12)

whereτ∗ = (τ1)
−λ − 1, τ∗∗ = (τ2)

−λ − 1, λ = (m + α)−1,

τ1 =
(

1− τ
2

)

and τ2 =
(

τ
2

)

.

Similarly, the central coverage100τ% Bayes prediction
bounds for the future observationY are obtained similarly
by solving following equality

Pr (Y ≤ l1EC) =
1− τ

2
= Pr (Y ≥ l1EC) . (13)

Solving (13), the lower and upper empirical Bayes predic-
tion bounds for the future random observationY are given
as

l1EC =
(

δT̂m (x; δ)ω∗

)
1

δ

(14)

and

l2EC =
(

δT̂m (x; δ)ω∗∗

)
1

δ

; (15)

whereω∗ =
(

(

1+τ
2

)

−λ
− 1
)

and ω∗∗ =
(

(

1−τ
2

)

−λ
− 1
)

.

Hence, the empirical Bayes prediction bound lengths under
One-Sided and Central coverage are obtained as

IE = l2E − l1E

and

IEC = l2EC − l1EC .

Table 1: Censoring Scheme for Different Values ofm

Case m Ri ∀ i = 1, 2, ...,m
1 05 1 2 1 0 1
2 10 1 0 0 3 0 0 1 0 0 1
3 15 1 0 2 0 0 1 0 2 0 0 1 0 0 1 2

V. NUMERICAL ANALYSIS

We illustrate the procedure by presenting a complete anal-
ysis under a simulated data set. The random samples are
generated as follows:

Generates the values of parameterθ through prior
density π(θ) for a given set of prior parametersα(=
0.50, 1.00, 2.50, 5.00) and corresponding values of prior pa-
rameterβ is estimated by its ML estimatêβML.

Using above generated values ofθ with δ(= 1); a set of
10, 000 random samples of sizen = 20 has been drawn from
underlying model. For selected values of progressive censored
sampling schemem(= 05, 10, 15) and level of significance
τ(= 99%, 95%, 90%); the empirical Bayes prediction lengths
of bounds are obtained and presents them in Table 2. Table 1
shows the different progressive censoring scheme.

It is observed from the table that, the lengths of empirical
Bayes prediction bounds for both cases tend to be wider
as progressive censoring schemem increases and changed,
when other parametric values are fixed. The length of bounds
expended also, when hyper-parameterα increases.

It is also seen that the length of bounds tends to be closer
when the level of significanceτ decreases for both cases when
other parametric values are fixed.

However, it is remarkable that the central coverage empirical
Bayes prediction length of bounds are wider as compare to
one-sided empirical Bayes prediction length of bounds for
higher significance level. For90% significance andα ≥ 2.50,
the one-sided prediction length of bounds is wider as compare
to central coverage criterion.
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Table 2: Empirical Bayes Prediction Bound Length of Intervals under One-Sample Technique

n = 20 One - Sided Central Coverage
m (α) ↓ τ → 90% 95% 99% 90% 95% 99%

0.50 0.4971 0.5777 0.6981 1.0079 1.1854 1.3243
05 1.00 0.6158 0.6278 0.7147 1.0146 1.2019 1.4715

2.50 1.0696 1.1808 1.4087 1.0401 1.2307 1.8504
5.00 1.3324 1.3625 1.6472 1.0575 1.3753 1.9805
0.50 0.6331 0.6974 0.7718 1.0094 1.1942 1.3932

10 1.00 0.8079 0.8934 0.9884 1.0417 1.2513 1.5551
2.50 1.2181 1.2537 1.6219 1.0752 1.2817 1.8622
5.00 1.3813 1.4154 1.8306 1.1278 1.5173 1.9829
0.50 0.7112 0.8487 0.8729 1.0133 1.2541 1.4239

15 1.00 0.8285 0.9548 1.0079 1.0933 1.2936 1.5928
2.50 1.2275 1.4235 1.714 1.1196 1.5437 1.8799
5.00 1.4075 1.6519 1.8889 1.2565 1.6853 1.9894
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