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Finite Dimensional Fuzzy Cone Normed Linear

Spaces
T. Bag⋆

Abstract—In this paper, an idea of fuzzy cone normed linear
space is introduced. Some basic definitions viz. convergence of
sequence, Cauchy sequence, closedness, completeness etc are
given. One lemma is established and with the help of this lemma
some results on finite dimensional fuzzy cone normed linear
spaces are established.
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I. INTRODUCTION

The idea of fuzzy set theory was introduced by L.A.Zadeh

[15] in 1965 and fuzzy logic has become an important area

of research in various branches of mathematics such as metric

and topological spaces, automata theory, optimization, control

theory etc. Fuzzy set theory also found applications for mod-

eling, uncertainty and vagueness in various fields of science

and engineering.

Fuzzy functional analysis is a recent development and it is

based on fuzzy metric space theory and fuzzy normed linear

space theory. Many authors have made important contributions

[1], [5], [7], [10] in fuzzy functional analysis.

On the other hand, a number of generalizations of metric

spaces as well as normed linear spaces have been done.

In metric space theory, one is D-metric space initiated by

Dhage [4] in 1992 and its corresponding generalize form

in fuzzy setting developed by Sedghi et al. [13], [14], Bag

[2]. Recently the idea of cone metric space is relatively new

which is introduced by H.Long-Guang et al. [8] and it is

a generalization of classical metric space. Its corresponding

generalize form in fuzzy setting called fuzzy cone metric space

is introduced by Bag [3].

The idea of cone normed linear space which is a gener-

alization of classical normed linear space is established by

T.K.Samanta et al.[12]. In such space, authors have considered

a real Banach space as the range set of the cone norm.

In this paper, idea of fuzzy cone normed linear space is

introduced and some basic definitions are given.

Here the range of fuzzy cone norm is considered as E∗(I)
where E is a given real Banach space and E∗(I) denotes the

set of all non-negative fuzzy real numbers defined on E.

It is shown that fuzzy cone normed linear space is a

generalization of Felbin’s [5] type fuzzy normed linear space
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(when L = min and U = max). Finally some results in finite

dimensional fuzzy cone normed linear space are established.

The organization of the paper is as follows: Section II

comprises some preliminary results which are used in this

paper. Definition of fuzzy cone normed linear space and

some basic properties are discussed in Section III. In Section

IV, some results in finite dimensional fuzzy cone normed linear

space are established.

II. SOME PRELIMINARY RESULTS.

A fuzzy number is a mapping x : R → [0 , 1] over the

set R of all reals.

A fuzzy number x is convex if x(t) ≥ min(x(s), x(r))
where s ≤ t ≤ r.

The α-level set of a fuzzy real number η is denoted by [η]α
and defined by [η]α = {t ∈ R : η(t) ≥ α}.

If there exists a t0 ∈ R such that x(t0) = 1, then x is

called normal. For 0 < α ≤ 1, α-level set of an upper

semi continuous convex normal fuzzy number ( denoted by

[η]α) is a closed interval [aα , bα], where aα = −∞ and

bα = +∞ are admissible. When aα = −∞, for instance,

then [aα , bα] means the interval (−∞ , bα]. Similar is the

case when bα = +∞.

A fuzzy number x is called non-negative if

x(t) = 0, ∀t < 0

Kaleva (Felbin) denoted the set of all convex, normal, upper

semicontinuous fuzzy real numbers by E(R(I)) and the set of

all non-negative, convex, normal, upper semicontinuous fuzzy

real numbers by G(R∗(I)).
A partial ordering ” ≼ ” in E is defined by η ≼ δ if and

only if a1α ≤ a2α and b1α ≤ b2α for all α ∈ (0 , 1] where

[η]α = [a1α , b1α] and [δ]α = [a2α , b2α]. The strict inequality

in E is defined by η ≺ δ if and only if a1α < a2α and b1α < b2α
for each α ∈ (0 , 1].

According to Mizumoto and Tanaka [10] , the arithmetic

operations ⊕, ⊖ ,⊙ on E × E are defined by

(x⊕ y)(t) = sup
s∈R

min{x(s), y(t− s)}, t ∈ R

(x⊖ y)(t) = sup
s∈R

min{x(s), y(s− t)}, t ∈ R

(x⊙ y)(t) = sup
s∈R,s ̸=0

min {x(s) , y( t
s
)}, t ∈ R

Propositon 2.1[10]. Let η , δ ∈ E(R(I)) and

[η]α = [a1α , b1α], [δ]α = [a2α , b2α], α ∈ (0 , 1].
Then

[η ⊕ δ]α = [a1α + a2α , b1α + b2α]
[η ⊖ δ]α = [a1α − b2α , b1α − a2α]
[η ⊙ δ]α = [a1αa

2
α , b1αb

2
α]
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Definition 2.1[7]. A sequence {ηn} in E is said to be

convergent and converges to η denoted by lim
n→∞

ηn = η if

lim
n→∞

anα = aα and lim
n→∞

bnα = bα where [ηn]α = [anα, b
n
α]

and [η]α = [aα, bα] ∀α ∈ (0, 1].
Note 2.1[7]. If η, δ ∈ G(R∗(I)) then η ⊕ δ ∈ G(R∗(I)).
Note 2.2[7]. For any scalar t, the fuzzy real number tη is

defined as tη(s) = 0 if t=0 otherwise tη(s) = η( s
t
).

Definition of fuzzy norm on a linear space as introduced by

C. Felbin is given below:

Definition 2.2[5]. Let X be a vector space over R.

Let || || : X → R∗(I) and let the mappings

L,U : [0 , 1]× [0 , 1] → [0 , 1] be symmetric, nondecreasing

in both arguments and satisfy

L(0 , 0) = 0 and U(1 , 1) = 1.
Write

[||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and

suppose for all x ∈ X, x ̸= 0, there exists α0 ∈ (0 , 1]
independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed

linear space and || || is a fuzzy norm if

(i) ||x|| = 0̄ if and only if x = 0 ;

(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R ;

(iii) for all x, y ∈ X,

(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s+ t ≤ ||x+y||11,
||x+ y||(s+ t) ≥ L(||x||(s) , ||y||(t)),

(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s+ t ≥ ||x+y||11,
||x+ y||(s+ t) ≤ U(||x||(s) , ||y||(t))

Remark 2.1[5]. Felbin proved that,

if L =
∧

(Min) and U =
∨

(Max) then the triangle inequality

(iii) in the Definition 1.1 is equivalent to

||x+ y|| ≼ ||x||
⊕

||y||.
Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈

(0 , 1].
Definition 2.3[8]. Let E be a real Banach space and P be a

subset of E. P is called a cone if

(i) P is closed, nonempty and P ̸= {0};

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P .

(iii) x ∈ P and −x ∈ P ⇒ x = 0̄.
Given a cone P ⊂ E, we define a partial ordering ≤ with

respect to P by x ≤ y iff y−x ∈ P . On the other hand x < y

indicates that x ≤ y but x ̸= y while x << y will stand for

y − x ∈IntP where IntP denotes the interior of P.

The cone P is called normal if there is a number K > 0
such that for all x, y ∈ E,

with 0 ≤ x ≤ y implies ||x|| ≤ K||y||.
The least positive number satisfying above is called the normal

constant of P.

The cone P is called regular if every increasing sequence which

is bounded from above is convergent. That is if {xn} is a

sequence such that x1 ≤ x2 ≤ ........ ≤ xn ≤ .... ≤ y for

some y ∈ E, then there is x ∈ E such that ||xn − x|| → 0 as

n → ∞.

Equivalently, the cone P is regular if every decreasing sequence

which is bounded below is convergent. It is clear that a regular

cone is a normal cone.

In the following we always assume that E is a real Banach

space, P is a cone in E with IntP ̸= ϕ and ≤ is a partial

ordering with respect to P.

Definition 2.4[12]. Let V be a vector space over the field

R. The mapping || ||c : V → E is said to be a cone norm if

it satisfies the following conditions:

(i) ||x||c ≥ θ ∀x ∈ V ;

(ii) ||x||c = θ iff x = θV ;

(iii) ||αx||c = |α|||x||c ∀x ∈ V, α ∈ R;

(iv) ||x+y||c ≤ ||x||c+ ||y||c ∀x, y ∈ V. Then || ||c is called

a cone norm on V and (V , || ||c) is called a cone normed

linear space.

Definition 2.5[3]. Let (E, || ||) be a fuzzy real Banach space

where || || : E → R∗(I).
Denote the range of || || by E∗(I). Thus E∗(I) ⊂ R∗(I).

Definition 2.6[3]. A member η ∈ E∗(I) is said to be an

interior point if ∃r > 0 such that

S(η, r) = {δ ∈ E∗(I) : η ⊖ δ ≺ r̄} ⊂ E∗(I).
Set of all interior points of E∗(I) is called interior of E∗(I).

Definition 2.7[3]. A subset of F of E∗(I) is said to be fuzzy

closed if for any sequence {ηn} in F such that lim
n→∞

ηn = η

implies η ∈ F.

Definition 2.8[3]. A subset P of E∗(I) is called a fuzzy

cone if

(i) P is fuzzy closed, nonempty and P ̸= {0̄};

(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P .

Given a fuzzy cone P ⊂ E∗(I), define a partial ordering ≤
with respect to P by η ≤ δ iff δ ⊖ η ∈ P and η < δ indicates

that η ≤ δ but η ̸= δ while η << δ will stand for δ⊖ η ∈IntP

where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number

K > 0 such that for all η, δ ∈ E∗(I),
with 0̄ ≤ η ≤ δ implies η ≼ Kδ. The least positive number

satisfying above is called the normal constant of P.

The fuzzy cone P is called regular if every increasing sequence

which is bounded from above is convergent. That is if {ηn}
is a sequence such that η1 ≤ η2 ≤ ........ ≤ ηn ≤ .... ≤ η for

some η ∈ E∗(I), then there is δ ∈ E∗(I) such that ηn → δ

as n → ∞.

Equivalently, the fuzzy cone P is regular if every decreasing

sequence which is bounded below is convergent. It is clear

that a regular fuzzy cone is a normal fuzzy cone.

III. FUZZY CONE NORMED LINEAR SPACES

In this section an idea of fuzzy cone normed linear space

is introduced and prove some properties. In the following we

always assume that E is a real Banach space, P is a fuzzy cone

in E with IntP ̸= ϕ and ≤ is a partial ordering with respect to

P.

Definition 3.1. Let V be a vector space over the field R.

The mapping || ||P : V → E∗(I) is said to be a fuzzy cone

norm if it satisfies the following conditions:

(CN1) ||x||P ≥ θ ∀x ∈ V ;

(CN2) ||x||P = θ iff x = θV ;;

(CN3) ||αx||P = |α|||x||P ∀x ∈ V, α ∈ R;
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(CN4) ||x+ y||P ≤ ||x||P ⊕ ||y||P ∀x, y ∈ V. Then || ||P
is called a cone norm on V and (V , || ||P ) is called a cone

normed linear space.

Note 3.1. Fuzzy cone normed linear space is a generalized

fuzzy normed linear space.

For, choose E = R and P = {η ∈ E∗(I) : η ≽ 0̄} and

partial ordering ≤ as ≼ then (X, || ||) is a Felbin’s type fuzzy

normed linear space when L= min and U=Max.

Example 3.1 Let (E, || ||′) be a Banach space. Define

|| || : E → R∗(I) by

||x||(t) =

{

1 if t > ||x||′

0 if t ≤ ||x||′

Then [||x||]α = [||x||′ , ||x||′] ∀α ∈ (0, 1].
It is easy to verify that,

(i) ||x|| = 0̄ iff x = 0 (ii) ||rx|| = |r|||x|| (iii) ||x + y|| ≼
||x|| ⊕ ||y||.
Thus (E, || ||) is a fuzzy normed linear space. Let {xn} be a

Cauchy sequence in (E, || ||)
So, limm,n→∞ ||xn − xm|| = 0̄.
⇒ limm,n→∞ ||xn−xm|| = 0 ⇒ {xn} be a Cauchy sequence

in (E, || ||′).
Since (E, || ||′) is complete, ∃x ∈ E such that

limm,n→∞ ||xn − x||′ = 0.
i.e. limn→∞ ||xn − x|| = 0̄.
Thus (E, || ||) is a real fuzzy Banach space.

Define P = {η ∈ E∗(I) : η ≽ 0̄}.

(i) P is fuzzy closed.

For, consider a sequence {δn} in P such that limn→∞ δn → δ.

i.e. limn→ δ1n,α = δ1α and limn→ δ2n,α = δ2α where [δn]α =
[δ1n,α , δ2n,α] and [δ]α = [δ1α , δ2α] ∀α ∈ (0, 1].
Now δn ≽ 0̄ ∀n.
So, δ1n,α ≥ 0 and δ2n,α ≥ 0 ∀α ∈ (0, 1].
⇒ limn→ δ1n,α ≥ 0 and limn→ δ2n,α ≥ 0 ∀α ∈ (0, 1]
⇒ δ1α ≥ 0 and δ2α ≥ 0 ∀α ∈ (0, 1]
⇒ δ ≽ 0̄.
So δ ∈ P. Hence P is fuzzy closed.

(ii) It is obvious that, a, b ∈ R, a, b ≥ 0 η, δ ∈ P ⇒ aη⊕bδ ∈
P.

Thus P is a fuzzy cone in E.

Now choose the ordering ≤ as ≼ and define || ||P : E →
E∗(I) by ||x||P = ||x||.
Then it is easy to verify that || ||P satisfies the conditions

(CN1) to (CN4). Hence (E , || ||P ) is a fuzzy cone normed

linear space.

Definition 3.2. Let (V, || ||P ) be a fuzzy cone normed linear

space. Let{xn} be a sequence in V and x ∈ V. If for every

c ∈ E with 0̄ << ||c|| there is a positive integer N such that

for all n > N, ||xn − x||P << ||c||, then {xn} is said to

be convergent and converges to x and x is called the limit of

{xn}. We denote it by lim
n→∞

xn = x.

Lemma 3.1. Let (V , || ||P ) be a fuzzy cone normed

linear space space and P be a normal fuzzy cone with normal

constant K. Let{xn} be a sequence in V. Then {xn} converges

to x iff ||xn − x||P → 0̄ as n → ∞.

Proof. First we suppose that {xn} converges to x. For every

real number ϵ > 0, choose c ∈ E with 0̄ << ||c|| and K||c|| ≺
ϵ̄.

Then ∃ a natural number N, such that ∀n > N, ||xn−x||P <<

||c||.
So that when n > N, ||xn − x||P ≼ K||c|| ≺ ϵ̄ ( since P is

normal ).

i.e. ||xn − x||1P,α < ϵ and ||xn − x||2P,α < ϵ ∀n ≥ N, ∀α ∈
(0, 1].
i.e. lim

n→∞
||xn − x||1P,α = 0 and lim

n→∞
||xn − x||2P,α = 0 ∀α ∈

(0, 1].
i.e. lim

n→∞
||xn − x||P = 0̄.

Conversely, suppose that lim
n→∞

||xn − x||P = 0̄.

For, c ∈ E with 0̄ << ||c|| , there is δ > 0 such that ||x|| ≺ δ̄.

This implies that ||c|| ⊖ ||x|| ∈ IntP.

For this δ there is a positive integer N such that ∀n >

N, ||xn − x||P ≺ δ̄.

Let ||xn − x||P = ||yn|| where yn ∈ E for each n. So

||yn|| ≺ δ̄ ∀n > N .

i.e. ||c|| ⊖ ||yn|| ∈ IntP ∀n > N

⇒ ||yn|| << ||c|| ∀n > N

⇒ ||xn − x||P << ||c|| ∀n > N

⇒ xn → x as n → ∞.

Lemma 3.2. Let (V , || ||P ) be a fuzzy cone normed linear

space and P be a normal fuzzy cone with normal constant K.

Let{xn} be a sequence in V. If {xn} is convergent then its

limit is unique.

Proof. If possible suppose that limn→∞ xn = x and

limn→∞ xn = y. Thus for any c ∈ E with 0̄ << ||c||, there

exists a natural number N such that ∀n > N, ||xn−x||P <<

||c|| and ||yn − y||P << ||c||.
We have ||x− y||P ≤ ||x− xn||P ⊕ ||xn − y||P ≤ 2||c||.
Hence ||x− y||P ≼ 2K||c||.
Since c is arbitrary, we have ||x− y||P = 0̄. i.e. x = y.

Definition 3.3. Let (V , || ||P ) be a fuzzy cone normed

linear space and {xn} be a sequence in V. If for any c ∈ E

with 0̄ << ||c||, there exists a natural number N such that

∀m,n > N, ||xn − xm||P << ||c||, then {xn} is called a

Cauchy sequence in V.

Definition 3.4. Let (V , || ||P ) be a fuzzy cone normed

linear space. If every Cauchy sequence is convergent in V,

then V is called a complete fuzzy cone normed linear space.

Lemma 3.3. Let (V , || ||P ) be a fuzzy cone normed linear

space and {xn} be a sequence in V. If {xn} is convergent

then it is a Cauchy sequence.

Proof. Let {xn} converges to x. So for any c ∈ E

with 0̄ << ||c|| there exists a natural number N such that

∀m,n > N, ||xn − x||P << || c2 || and ||xm − x||P << || c2 ||.
Hence ||xn − xm||P ≤ ||xn − x||P ⊕ ||x − xm||P <<

||c|| ∀m,n > N.

Thus {xn} is a Cauchy sequence.

IV. FINITE DIMENSIONAL FUZZY CONE NORMED LINEAR

SPACES

In this section some results on finite dimensional fuzzy cone

normed linear spaces are established.

Lemma 4.1. Let {x1, x2, ......., xn} be a linearly in-

dependent set of vectors in a fuzzy cone (P) normed linear

space (X , || ||P ) with normal constant K. Then there

exists a member c ∈ IntP such that for every set of scalars
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α1 , α2 , .... , αn we have

||α1x1 + α2x2 + ........+ αnxn||P ≥
n
∑

i=1

|αi|||c||...........(1).

Proof. Let s = |α1| + |α2| + ....... + |αn|. If s = 0 then

each αi’s is zero and hence (1) is true.

So we assume that s > 0. Then (1) becomes

||β1x1 + β2x2 + ........ + βnxn||P ≥ ||c||.........(2) where

βi =
αi

s
and

n
∑

i=1

|βi| = 1.

Thus it is sufficient to prove that there exists an element c ∈
IntP such that (2) holds for any set of scalars β1, β2, ........ βn

with

n
∑

i=1

|βi| = 1.

If possible suppose that this is not true. Then there exists a

sequence {ym} in X where

ym = β
(m)
1 x1 +β

(m)
2 x2 +.........+β

(m)
n xn with

n
∑

i=1

|β
(m)
i | =

1, m = 1, 2, ......
such that ||ym||P → 0̄ as m → ∞.

Since

n
∑

i=1

|β
(m)
i | = 1 for m = 1, 2, ..... we have

|β
(m)
i | ≤ 1 for i = 1, 2, ....., n and m = 1, 2, .......

Hence for a fixed i = 1, 2, ....., n the sequence β
(m)
i is

bounded. Therefore by Bolzano-Weierstrass theorem {β
(m)
1 }

has a subsequence converging to β1 (say) and suppose {y1,m}
denotes the corresponding subsequence of {ym}. By the same

argument the sequence {y1,m} has a subsequence {y2,m}
(say) for which the corresponding subsequence of real scalars

{β
(m)
2 } converges to β2 ( say ). Continuing this procress, after

n-step, we obtain a sequence {yn,m} of {ym} of the form

yn,m =
n
∑

i=1

δ
(m)
i xi with

n
∑

i=1

|δ
(m)
i | = 1 m = 1, 2, ......

where δ
(m)
i → βi as m → ∞ and for each i = 1, 2, ...., n. So

n
∑

i=1

|βi| = 1.

Since

n
∑

i=1

|βi| = 1, thus not all β’s are zero. Since

{x1, x2, ......., xn} is a linearly independent set of vectors,

so y ̸= 0.
We have ||δ

(m)
i xi − βixi||P = |δ

(m)
i − βi|||xi||P .

So lim
m→∞

||δ
(m)
i xi − βixi||P = 0̄X (δ

(m)
i → βi ).

Thus δ
(m)
i xi → βixi as m → ∞ for each i = 1, 2, ......., n.

For every ϵ > 0, choose c ∈ E with 0̄ << ||c|| and

K||c|| ≺ ϵ̄. Then for each i, ∃ a natural number Ni such

that ||δ
(m)
i xi − βixi||P << ||c|| ∀m ≥ Ni and for each

i = 1, 2, ......., n.
Let N = max

1≤i≤n
Ni.

Then ||δ
(m)
i xi − βixi||P << ||c|| ∀m ≥ N and for each

i = 1, 2, ......., n.
⇒ ||δ

(m)
i xi − βixi||P ≤ ||c|| ∀m ≥ N and for each

i = 1, 2, ......., n.
Let ||δ

(m)
i xi − βixi||P = ||z

(m)
i || where z

(m)
i ∈ E for each

i = 1, 2, ......., n.

From above we have, ||z
(m)
i || ≤ ||c|| ∀m ≥ N and for each

i = 1, 2, ......., n.
⇒ ||z

(m)
i || ≼ K||c|| ≺ ϵ̄ ∀m ≥ N and for each i =

1, 2, ......., n.
⇒ lim

n→∞
||z

(m)
i || = 0̄E .

⇒ lim
n→∞

||yn,m − y||P = 0̄E .

⇒ lim
m→∞

yn,m = y.

Now ||yn,m||P = ||yn,m − y + y||P ≤ ||yn,m − y||P ⊕ ||y||P .
Since ||yn,m − y||P ⊕ ||y||P ∈ E∗(I) we may choose

||yn,m − y||P ⊕ ||y||P = ||z′n,m|| where z′n,m ∈ E.

Thus ||zn,m|| ≤ ||z′n,m|| where ||zn,m|| = ||yn,m||P , zn,m ∈
E

⇒ ||zn,m|| ≼ K||z′n,m||
⇒ ||zn,m||1α ≤ K||z′n,m||1α and ||zn,m||2α ≤
K||z′n,m||2α ∀α ∈ (0 , 1]
⇒ ||yn,m||1P,α ≤ K{||yn,m − y||1P,α + ||y||1P,α} and

||yn,m||2P,α ≤ K{||yn,m − y||2P,α + ||y||2P,α} ∀α ∈ (0, 1]
⇒ ||yn,m||1P,α − K||y||1P,α ≤ K{||yn,m − y||1P,α and

||yn,m||2P,α − ||y||2P,α ≤ K{||yn,m − y||2P,α ∀α ∈ (0, 1]

⇒ lim
m→∞

||yn,m||1P,α = ||Ky||1P,α and lim
m→∞

||yn,m||2P,α =

||Ky||2P,α ∀α ∈ (0, 1]
⇒ ||yn,m||P = ||Ky||P as m → ∞.

Since ||ym||P → 0̄ as m → ∞, it follows that ||yn,m||P → 0̄
as m → ∞.

So ||Ky||P = 0̄. i.e. y = 0 which is a contradiction.

Hence the lemma is proved.

Theorem 4.1. Every finite dimensional fuzzy cone normed

linear space with normal constant K is complete.

Proof. Let (X , || ||P ) be a fuzzy cone normed linear space

with normal constant K. Let {xn} be a Cauchy sequence in

X.

Let dim X=m and {e1, e2, ......, em} be a basis for X. Then

each xn has a unique representation as

xn = β
(n)
1 e1 + β

(n)
2 e2 + ......... + β

(n)
m em where

β
(n)
1 , β

(n)
2 , ........., β

(n)
m are scalars for each n = 1, 2, .......

Since {xn} is a Cauchy sequence, for every e ∈ E with

||e|| >> 0̄ there exists a positive integer N such that

||xn − xk|| << ||e|| ∀n, k ≥ N.

Now from Lemma 4.1, it follows that ∃c ∈ IntE with ||c|| ≻ 0̄

such that ||ϵ|| >> ||xn−xk|| ≥ ||c||
m
∑

i=1

|β
(n)
i −β

(
ik)| ∀n, k ≥

N.

⇒ ||c||
m
∑

i=1

|β
(n)
i − β

(
ik)| ≤ ||e|| ∀n, k ≥ N.

⇒ ||c||

m
∑

i=1

|β
(n)
i − β

(
ik)| ≼ K||e|| ∀n, k ≥ N.

⇒ ||c||1α

m
∑

i=1

|β
(n)
i − β

(
ik)| ≤ K||e||1α and ||c||2α

m
∑

i=1

|β
(n)
i −

β
(
ik)| ≥ K||e||2α ∀n, k ≤ N ∀α ∈ (0 , 1]

⇒ ||c||1α|β
(n)
i − β

(
ik)| ≤ K||e||1α and ||c||2α|β

(n)
i − β

(
ik)| ≥

K||e||2α ∀n, k ≤ N ∀α ∈ (0 , 1], for each i = 1, 2, .....
Since e ∈ E is arbitrary, from above it follows that each of

the m sequences {β
(n)
i } is Cauchy in R. Since R is complete,

thus each {β
(n)
i } converges and denote by βi are their limits

for each i = 1, 2, ....,m.
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We define x = β1e1+ β2e2+ ........+βmem. Clearly x ∈ X.

We have,

||xn − x||P = ||

m
∑

i=1

(β
(n)
i − β)ei||P ≤ |β

(n)
1 − β1|||e1||P ⊕

|β
(n)
2 − β2|||e2||P ⊕ ......⊕ |β(n)

m − βm|||em||P .

Since |β
(n)
i − βi| → 0 as n → ∞ for each i = 1, 2, ....,m we

get ||xn − x||P → 0̄ as n → ∞.

Thus the Cauchy sequence {xn} converges to x ∈ X. Since

{xn} is arbitrary it follows that X is complete.

Definition 4.1. Let (X , || ||P ) be a fuzzy cone normed

linear space.

(i) Let c ∈ E with 0̄ << ||c|| and b ∈ X.

Define Bc(b) = {x ∈ X : ||x− b||P << ||c||}.

(ii) A subset B of X is said to be closed if any sequence

{xn} in B converges to some point x ∈ B.

(iii) A subset F of X is said to be the closure of B if for any

x ∈ F , there exists a sequence {xn} in B such that xn → x

as n → ∞ with respect to the cone norm || ||P .

(iv) A subset C of X is said to be bounded if C ⊂ Bc(b)
for some b ∈ X and c ∈ E with 0̄ << ||c||.

(v) A subset F of X is said to be compact if for any sequence

{xn} in F, there exists a subsequence of {xn} which converges

to some point in F.

Theorem 4.2. In a finite dimensional fuzzy cone normed

linear space with normal constant K, a subset M of X is

compact if and only if M is closed and bounded.

Proof. Let M be a compact subset of X. Then from

definition it is easy to verify that M is closed.

Next we show that M is bounded. If possible suppose that M

is not bounded. Let x0 be a fixed element in X. Then there

exists a point x1 ∈ M such that ||x1 − x0||P > ||c|| for some

c ∈ E with ||c|| >> 0̄.
By the same reason there exists a point x2 ∈ M such that

||x2 − x0||P > ||x1 − x0||P ⊕ ||c||.
Continuing this process we obtain a sequence x1, x2, ......

of the set M such that

||xn −x0||P > ||x1 −x0||P ⊕ ||x2 −x0||P ⊕ ......⊕ ||xn−1 −
x0||P ⊕ ||c||.
i.e. ||xn − x0||P > ||xm − x0||P ⊕ ||c|| ∀m < n.

i.e. ||xn−x0||P ⊖ ||xm−x0||P > ||c|| ∀m < n...........(i).
Now ||xn − x0||P ≤ ||xn − xm||P ⊕ ||xm − x0||P
i.e ||xn − x0||P ⊖ ||xm − x0||P ≤ ||xn − xm||P ...........(ii).
From (i) and (ii) we have, ||c|| < ||xn − xm||P ∀m <

n...........(iii).
From (iii), it follows that, neither the sequence nor any

subsequence of {xn} can converge. This contradicts the fact

that M is compact. Hence M is bounded.

Conversely suppose that M is closed and bounded and we

have to show that M is compact.

Let dim X =n. Let {e1, e2, ......., en} be a basis for X.

Chose {xm} in M. Since M is bounded, there exists p ∈ E

such that xm ∈ Bp(b) for some b ∈ X and ∀m.

i.e. ||xm − b||P << ||p|| ∀m.

Now ||xm||P = ||xm − b + b||P ≤ ||xm − b||P ⊕ ||b||P <<

||p|| ⊕ ||b||P ∀m.

i.e. ||xm||P << ||p|| ⊕ ||b||P ∀m.

Let xm = β
(m)
1 e1 + β

(m)
2 e2 + ......... + β

(m)
n en where

β
(m)
1 , β

(m)
2 , ........., β

(m)
n are scalars for each m=1,2,.......

Thus by Lemma 4.1, ∃c ∈ IntP such that

||p|| ⊕ ||b||P >> ||xm||P = ||

n
∑

j=1

(β
(m)
j ej ||P ≥

||c|||

n
∑

j=1

|β
(m)
i |.

i.e. ||p|| ⊕ ||b||P ≥ ||c|||

n
∑

j=1

|β
(m)
i |..........(i)

Let ||b||P = ||b′|| for some b′ ∈ E.

So from above we get ||p|| ⊕ ||b′|| ≥ ||c|||

n
∑

j=1

|β
(m)
i |

i.e. ||c||
n
∑

j=1

|β
(m)
i | ≼ K(||p|| ⊕ ||b′||)

i.e ||c||1α

n
∑

j=1

|β
(m)
i | ≤ K(||p||1α + ||b′||1α) and

||c||2α

n
∑

j=1

|β
(m)
i | ≤ K(||p||2α + ||b′||2α) ∀α ∈ (0 , 1].

From above two relations it follows that each sequence

{β
(m)
j } (j = 1, 2, ..., n) is bounded. By Bolzano-Weiestrass

theorem it follows that each of the sequence {β
(m)
j }

has a convergent subsequence say {β
(mk)
j } for each

j = 1, 2, ......, n.
Let xmk

= β
(mk)
1 e1 + β

(mk)
2 e2 + ......... + β

(mk)
n en where

β
(mk)
1 , β

(mk)
2 , ........., β

(mk)
n are convergent sequences of

scalars

Let βj = lim
k→∞

β
(mk)
j for j = 1, 2, ..., n. and

x = β1e1 + β2e2 + .......+ βnen.

Now ||xmk
−x||P = ||

n
∑

j=1

(β
(mk)
j −βj)ej ||P ≤

n
∑

j=1

|β
(mk)
j −

βj |||ej ||P .

Since |β
(mk)
j − βj | → 0 as k → ∞, from the proof of the

Lemma 4.1, it follows that lim
k→∞

||xmk
− x||P = 0̄.

i.e. {xmk
} is a convergent subsequence of {xm} and

converges to x. Since M is closed, it follows that x ∈ M.

Thus every sequence in M has a convergent subsequence and

converges to an element of M. Hence M is compact.

CONCLUSION

In this paper, an idea of fuzzy cone normed linear space is

introduced which is a generalization of fuzzy normed linear

space. In fuzzy cone normed linear space, range of fuzzy cone

norm is considered as ordering fuzzy real numbers defined on

a real fuzzy Banach space. It is seen that Felbin’s type ( max,

min ) fuzzy normed linear space is a particular case of fuzzy

cone normed linear space. I think that there is a large scope

of developing more results of fuzzy functional analysis in this

context.
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