Vertex Bi-magic Graphs from Magic and Anti-magic Graphs

A. Amara Jothi*, N.G. David and J. Baskar Babujee

Abstract—Let \(G(V, E) \) be a graph of order \(p \) and size \(q \) and let \(\lambda : V \cup E \to \{1, 2, ..., p+q\} \) be a bijective mapping. \(\lambda \) is called a vertex magic total labeling of \(G \) if at each vertex \(x \), the vertex weight under this \(\lambda \), \(w_{\lambda}(x) = \lambda(x) + \sum_{xy \in E} \lambda(xy) = \alpha \), a constant. \(\lambda \) is called a vertex bi-magic total labeling of \(G \) if the vertex weight at each vertex is either \(\alpha \) or \(\beta \), where \(\alpha, \beta \) are two fixed constants. It is called (\(a, d \)) vertex anti-magic total labeling of \(G \) if the set of vertex weights of all vertices in \(G \) is \(\{a, a+d, a+2d, ..., a+(p-1)d\} \), where \(a, d > 0 \) are integers. In this article, we introduce two other variations of bi-magic labeling namely (1, 0) vertex bi-magic and (0, 1) vertex bi-magic and also discuss new techniques of generating (1, 1) vertex bi-magic, (1, 0) vertex bi-magic and (0, 1) vertex bi-magic graphs using some operations on vertex magic and vertex anti-magic graphs.

Index Terms—Vertex magic graph, Vertex bi-magic graph, Vertex anti-magic graph, Bijective function.

MSC 2010 Codes – 05C78

I. PRELIMINARY

All graphs in this article are assumed to be finite, simple and undirected. In [1] MacDougall et al. introduced the notion of vertex magic total labeling (VMTL) and studied the basic properties of this labeling and also given methods of assigning VMTL for several families of graphs, including cycle, paths, complete graphs of odd order and complete bipartite graphs. They also have identified few families of graphs which do not admit VMTL. VMTL has also been extensively studied by many authors [2, 3, 4, 5]. (a, d) vertex anti-magic total labeling (VATL) was introduced by Baca et al. in [6]. In [7] Yegnanarayanan defined several variations of vertex magic labelings (VMLs) and vertex anti-magic labelings (VALs) namely (1, 1) VML, (1, 0) VML, (0, 1) VML, (1, 1)-(a, d) VAL, (0, 1)-(a, d) VAL and also investigated the existence of such labeling on a number of classes of graphs. (1, 1) vertex bi-magic labeling (VBL) was introduced by Baskar Babujee in [8]. For a survey on VML, VAL and VBL of graphs we refer to [9]. In this article, we introduce two other variations of labelings namely (1, 0) VBL and (0, 1) VBL and new variations of vertex bi-magic graphs are discussed using some operations on vertex magic and vertex anti-magic graphs. The following definitions are related to our study.

Definition 1.1 [7, 8] Let \(G(p, q) \) be a graph and let \(\lambda : V \cup E \to \{1, 2, ..., p+q\} \) be a bijection. \(\lambda \) is called a (1, 1) VML of \(G \) if at each vertex \(x \), the vertex weight under this \(\lambda \), \(w_{\lambda}(x) = \lambda(x) + \sum_{xy \in E} \lambda(xy) = \alpha \), a constant. \(\lambda \) is called a (1, 1) VBL of \(G \) if the vertex weight at each vertex is either \(\alpha \) or \(\beta \), where \(\alpha, \beta \) are two fixed constants. It is called (\(a, d \)) vertex anti-magic total labeling of \(G \) if the set of vertex weights of all vertices in \(G \) is \(\{a, a+d, a+2d, ..., a+(p-1)d\} \), where \(a, d > 0 \) are integers.

Definition 1.2 [7] Let \(G(p, q) \) be a graph and let \(\lambda : V \to \{1, 2, ..., p\} \) be a bijection. \(\lambda \) is called a (1, 0) VML of \(G \) if at each vertex \(x \), the vertex weight under this \(\lambda \), \(w_{\lambda}(x) = \lambda(x) + \sum_{y \in V} \lambda(xy) = \alpha \), a constant. \(\lambda \) is called a (1, 0) VBL of \(G \) if the vertex weight at each vertex is either \(\alpha \) or \(\beta \), where \(\alpha, \beta \) are two fixed constants. It is called (\(a, d \)) vertex anti-magic total labeling of \(G \) if the set of vertex weights of all vertices in \(G \) is \(\{a, a+d, a+2d, ..., a+(p-1)d\} \), where \(a, d > 0 \) are integers.

Definition 1.3 [7] Let \(G(p, q) \) be a graph and let \(\lambda : E \to \{1, 2, ..., q\} \) be a bijection. \(\lambda \) is called a (0, 1) VML of \(G \) if at each vertex \(x \), the vertex weight under this \(\lambda \), \(w_{\lambda}(x) = \lambda(x) + \sum_{y \in V} \lambda(xy) = \alpha \), a constant. \(\lambda \) is called a (0, 1) VBL of \(G \) if the vertex weight at each vertex is either \(\alpha \) or \(\beta \), where \(\alpha, \beta \) are two fixed constants. It is called (\(a, d \)) vertex anti-magic total labeling of \(G \) if the set of vertex weights of all vertices in \(G \) is \(\{a, a+d, a+2d, ..., a+(p-1)d\} \), where \(a, d > 0 \) are integers.

Definition 1.4 [10] Duplication of a vertex \(x \in V \) by an edge \(x'x \) in a graph \(G \) produces a new graph \(G' \) in which the neighborhood of \(x' \) and \(x'' \) are respectively \(N(x') = \{x, x'\} \) and \(N(x'') = \{x, x'\} \).

Definition 1.5 Let \(G_1 \) and \(G_2 \) be any two graphs with order \(p_1 \) and \(p_2 \), respectively. Then \(G_1 \circ G_2 \) is obtained by taking \(G_1 \), \(p_1 \) copies of \(G_2 \) and joining \(i^{th} \) vertex of \(G_1 \) to every vertex in the \(i^{th} \) copy of \(G_2 \).

Definition 1.6 Let \(G_1 \) and \(G_2 \) be any two graphs of orders \(p_1 \) and \(p_2 \), respectively. Then \(G_1 \cup G_2 \) is obtained by adding an edge between every vertex of \(G_1 \) and \(G_2 \).

II. MAIN RESULTS

Theorem 2.1 If \(G \) has (1, 1)-(a, 1) VAL, then \(G + K_1 \) has (1, 1) VBL.

Proof Let \(G \) be a (1, 1)-(a, 1) vertex anti-magic graph with \(p \) vertices \(\{x_i : 1 \leq i \leq p\} \) and \(q \) edges. Consider the bijection \(\lambda : V \cup E \to \{1, 2, ..., p+q\} \) on \(G \) with the anti-magic property that vertex weight \(w_{\lambda}(x_i) = a + p - i; 1 \leq i \leq p \) for \(a > 0 \). Let \(G'(V', E') = G + K_1 \) be the graph with \(V' = V \cup \{z\} \)
and $E' = E \cup \{x_i; 1 \leq i \leq p\}$. Consider the bijection
\(\mu : V' \cup E' \to \{1, 2, \ldots, p, q, p + q + 1, \ldots, 2p + q + 1\} \)
on defined as follows:
\(\mu(x_i) = \lambda(x_i); 1 \leq i \leq p, \mu(e) = \lambda(e) \), for all $e \in E$.
\(\mu(z) = 2p + q + 1, \) and $\mu(z(x)) = p + q + i, \) for $1 \leq i \leq p$.
To complete the proof, it is necessary to show the existence of α and β.
For $x_i \in V, 1 \leq i \leq p$ we have
\[wt_\mu(x_i) = \mu(x_i) + wt_\lambda(x_i) = (p + q + i) + (a + p - i) = 2p + q + a = \alpha. \]
For $x \in V', wt_\mu(x) = \sum \mu(x_i) + \mu(z(x)) = \sum_{i=1}^{p} (p + q + i) + (2p + q + 1) = (p + q + p) + \frac{p(p + 1)}{2} + 2p + q + 1 = \frac{1}{2}(3p^2 + 2pq + 2q + 2) = (p + 1)(q + 1 + \frac{3p}{2}) = \beta. \]
Therefore, G' admits $(1, 1)$ VBL for $G + K_1$ with the weights $\alpha = 2p + q + a$ and $\beta = (p + 1)(q + 1 + \frac{3p}{2})$.

Theorem 2.2 Let G be a graph of odd order. If G has $(1, 1)$ VML, then $G + K_1$ admits $(1, 1)$ VBL.

Proof Let $G(p, q)$ with odd p be a graph that admits $(1, 1)$ VML. Then there exists a mapping $\lambda : V \cup E \to \{1, 2, \ldots, p + q\}$ such that the weight at each vertex $wt_\lambda(x_i) = a$ is a constant. Consider the new graph $G'(V', E') = G + 2K_1$ with $V' = V \cup \{y, z\}$ and $E' = E \cup \{xy, xz; 1 \leq i \leq p\}$. Define a bijection $\mu : V' \cup E' \to \{1, 2, \ldots, 3p + q + 2\}$ as given below:

Case(i) : When $n = 4k + 1, k \in N$

For $i = 2, 4, 6, \ldots, \frac{p - 1}{2}$, $\mu(xy_{2i}) = p + q + 2i, \mu(xy_{2i+1}) = p + q + 2i + 1, \mu(xz_{2i}) = 3p + q + 2i, \mu(xz_{2i+1}) = 3p + q + 2i + 1, \mu(yz_{2i}) = p + q + 2i, \mu(yz_{2i+1}) = p + q + 2i + 1, \mu(x_1) = 3p + q + 1 + i$.

Case(ii) : When $n = 4k - 1, k \in N$

For $i = 2, 4, 6, \ldots, \frac{p - 3}{2}$, $\mu(xy_{2i}) = p + q + 2i, \mu(xy_{2i+1}) = p + q + 2i + 1, \mu(xz_{2i}) = 3p + q + 2i + 1, \mu(xz_{2i+1}) = 3p + q + 2i + 1, \mu(yz_{2i}) = p + q + 2i, \mu(yz_{2i+1}) = p + q + 2i + 1, \mu(x_1) = 3p + q + 1 + i$.

In the following, we compute the weights of vertices in G'
\[wt_\mu(x_1) = wt_\lambda(x_1) + \mu(xy_1) + \mu(xz_1) = a + (p + q + 1) + (3p + q) = 4p + 2q + a + 1 = \alpha. \]
\[wt_\mu(xy_{2i+1}) = \mu(xy_{2i+1}) + \mu(yz_{2i+1}) = \mu(yz_{2i+1}) + \mu(xz_{2i+1}) = (p + q + 2i + 1) + (p + q + 2i + 1) = 4p + 2q + a + 1 = \alpha. \]

When $n = 4k - 1, k \in N$ we have
\[wt_\mu(y) = \mu(y) + \mu(x_1) + \sum_{i \text{ odd}} \mu(xy_{2i}) + \sum_{i \text{ odd}} \mu(xz_{2i+1}) + \sum_{i \text{ even}} \mu(yz_{2i+1}) + \sum_{i \text{ even}} \mu(xz_{2i+1}) + \mu(yz_{2i+1}) = (p + q + 2i + 1) + (p + q + 2i + 1) + (3p + q + 1) + (3p + q + 1) = 4p + 2q + a + 1 = \alpha. \]
\[wt_\mu(x_1) = \mu(x_1) + \sum_{i \text{ odd}} \mu(xy_{2i}) + \sum_{i \text{ odd}} \mu(xz_{2i+1}) + \sum_{i \text{ even}} \mu(yz_{2i+1}) + \sum_{i \text{ even}} \mu(xz_{2i+1}) + \mu(yz_{2i+1}) = (p + q + 2i + 1) + (p + q + 2i + 1) + (3p + q + 1) + (3p + q + 1) = 4p + 2q + a + 1 = \alpha. \]
Theorem 2.4

If an odd order graph G has (1, 1) VBL, then $G \otimes dK_1$ admits (1, 1) VBL.

Proof

Let $G(p, q)$ be a (1, 1)-(a, d) vertex anti-magic graph with $V(G) = \{x_1, x_2, ..., x_n\}$. Let λ be the label of G such that $\lambda(x_i) = i$, for $1 \leq i \leq p$ and let the vertex weight be $wt_{\lambda}(x_i) = a + i(1-d)$, for $1 \leq i \leq p$. Consider the new graph $G'(V', E') = G \otimes dK_1$ with $V' = V \cup \{x_i' : 1 \leq i \leq p, 1 \leq j \leq d\}$ and $E' = E \cup \{e_i' : 1 \leq i \leq p, 1 \leq j \leq d\}$. Define a vertex bi-magic labeling $\lambda' : V' \cup E' \rightarrow \{1, 2, ..., p + q + 2dp\}$ on G' in the following way:

For $1 \leq i \leq p, 1 \leq j \leq d$:

$$\lambda'(x_i') = \lambda(x_i) + 2dp - jp + i, \lambda'(e_i') = \lambda(x_i) + j - (i - 1).$$

The vertex weight in G' under λ' is calculated in the following for each $1 \leq i \leq p$:

$$wt_{\lambda'}(x_i') = wt_{\lambda}(x_i) + \sum_{j=1}^{d} \lambda'(e_i')$$

$$= (a + id - d) + \sum_{j=1}^{d} (p + q + jp - i + 1)$$

$$= (a + id - d) + (p + q - i + 1)d + pd(d + 1)$$

$$= \frac{1}{2}(2a + pd + 3p + 2d) = \alpha.$$

Thus, the graph $G \otimes dK_1$ admits (1, 1) VBL.

Theorem 2.4

If an odd order graph G has (1, 1)-(a, 2) VBL, then "vertex by edge duplication at all vertices on G" admits (1, 1) VBL.

Proof

Let G be a (1, 1)-(a, 2) vertex anti-magic graph with $\lambda : V \cup E \rightarrow \{1, 2, ..., p + q\}$ such that the vertex weight $wt_{\lambda}(x_i) = a + 2p - 2i$, for $1 \leq i \leq p$. Consider the graph obtained by "vertex by edge duplication at all vertices on G" with $V' = V \cup \{x_i', e_i', e_i'' : 1 \leq i \leq p\}$ and $E' = E \cup \{e_i', e_i'', e_i''' : 1 \leq i \leq p\}$, where e_i', e_i'' are adjacent to x_i, Similarly, e_i', e_i''' are adjacent to x_i. A bijective mapping $\lambda' : V' \cup E' \rightarrow \{1, 2, ..., 2p + q + 2p + 2q\}$ is given below.

$\lambda'(e_i'') = \lambda(x_i) + j - (i - 1)$

$\lambda'(x_i') = \lambda(x_i) + 2dp - jp + i, \lambda'(e_i') = \lambda(x_i) + j - (i - 1)$

The vertex weight under the labeling λ' are $wt_{\lambda'}(x_i') = wt_{\lambda}(x_i) + \lambda'(e_i') + \lambda'(e_i'')$

$$= \lambda(x_i) + 2dp - jp + i + (p + q + j - 2i)$$

When $i \equiv 0 \mod{2}$, $1 \leq i \leq p$, we obtain

$$wt_{\lambda'}(x_i') = \lambda'(x_i') + \lambda'(e_i'') + \lambda'(e_i''')$$

$$= (a + 2p - 2i) + (p + q + j - 2i) + (p + q + 2p - jp + j - (i - 1))$$

$$= 10p + 3q + \frac{2p^2}{3} = \beta.$$
If an odd order graph G has the α_i-worth of G admits even α VBL. Then the graph obtained by “vertex by edge duplication at all vertices on $G’$ admits (1, 1) VBL.

Proof. Let G be a (1, 1)-(a, 1) vertex anti-magic graph with $\alpha : V \cup E \to \{1, 2, ..., p + q\}$ such that the vertex weights $wt_{\alpha}(x_i) = a + 1 + i$, for $1 \leq i \leq p$. Consider the graph $G’$ obtained by “vertex by edge duplication at all vertices on $G’$ with $V’ = V \cup \{x’_i, x’_{2i} : 1 \leq i \leq p\}$ and $E’ = E \cup \{(x’_i, x’_{2i}) : 1 \leq i \leq p\}$, where $x’_i = (x_i, x_i)$, $x’_{2i} = (x_i, x_{2i})$, and $x’_{2i} = (x_{2i}, x_{2i})$. The required mapping $\lambda : V’ \cup E’ \to \{1, 2, ..., 6p + q\}$ is given below.

$$
\lambda(x_i) = \lambda(x_i), 1 \leq i \leq p \text{ and } \lambda(x) = \lambda(x) \text{, for all } e \in E.
$$

The bi-magic property of the above assignment labeling is verified below.

For $1 \leq i \leq p$,

$$
wt_{\lambda}(x_i) = wt_{\lambda}(x_i) + \lambda(x_i, x’_i) + \lambda(x_i, x’_{2i}) = (a + 1 + i) + (p + q + p + 1 - 2i) = a + 3p + 2q + 2\frac{p+1}{2} = \alpha.
$$

$$
wt_{\lambda}(x’_i) = \lambda(x’_i) + \lambda(x’_i, x’_{2i}) + \lambda(x’_i, x’_{2i}) = (5p + q + \frac{p+1}{2} + i) + (2p + q + \frac{p+1}{2} + i) = 9p + 3q + \frac{p+1}{2} = \beta.
$$

$$
wt_{\lambda}(x’_{2i}) = \lambda(x’_{2i}) + \lambda(x’_{2i}, x’_{2i}) = (4p + q + \frac{p+1}{2} + i) + (3p + q + i) = 9p + 3q + \frac{p+1}{2} = \beta.
$$

Hence the proof.

Theorem 2.2 If an odd order graph G has (1, 1)-(a, 1) VAL, then the graph obtained by “vertex by edge duplication at all vertices on $G’$ admits (1, 1) VBL.

Proof. Let G be a (1, 1)-(a, 1) vertex anti-magic graph with $\lambda : V \cup E \to \{1, 2, ..., p + q\}$ such that the vertex weights $wt_{\lambda}(x_i) = a + 1 + i$, for $1 \leq i \leq p$. Consider the graph $G’$ obtained by “vertex by edge duplication at all vertices on $G’$ with $V’ = V \cup \{x’_i, x’_{2i} : 1 \leq i \leq p\}$ and $E’ = E \cup \{(x’_i, x’_{2i}) : 1 \leq i \leq p\}$, where $x’_i = (x_i, x_i)$, $x’_{2i} = (x_i, x_{2i})$, and $x’_{2i} = (x_{2i}, x_{2i})$. The required mapping $\lambda : V’ \cup E’ \to \{1, 2, ..., 6p + q\}$ is given below.

$$
\lambda(x_i) = \lambda(x_i), 1 \leq i \leq p \text{ and } \lambda(x) = \lambda(x) \text{, for all } e \in E.
$$

The bi-magic property of the above assignment labeling is verified below.

For $1 \leq i \leq p$,

$$
wt_{\lambda}(x_i) = wt_{\lambda}(x_i) + \lambda(x_i, x’_i) + \lambda(x_i, x’_{2i}) = (a + 1 + i) + (p + q + p + 1 - 2i) = a + 3p + 2q + 2\frac{p+1}{2} = \alpha.
$$

$$
wt_{\lambda}(x’_i) = \lambda(x’_i) + \lambda(x’_i, x’_{2i}) + \lambda(x’_i, x’_{2i}) = (5p + q + \frac{p+1}{2} + i) + (2p + q + \frac{p+1}{2} + i) = 9p + 3q + \frac{p+1}{2} = \beta.
$$

$$
wt_{\lambda}(x’_{2i}) = \lambda(x’_{2i}) + \lambda(x’_{2i}, x’_{2i}) = (4p + q + \frac{p+1}{2} + i) + (3p + q + i) = 9p + 3q + \frac{p+1}{2} = \beta.
$$

Hence the proof.

Theorem 2.7 The graph $K_p + mK_1$, $p, l \geq 2$ and even m, admits $(1, 0)$ VBL.

Proof. Let $G(p, q) = K_p + mK_1$, with $V = V_1 \cup V_2$ where $V_1 = \{x : 1 \leq i \leq p\}$ is the vertex set of K_p and $V_2 = \{x : 1 \leq j \leq l, 1 \leq k \leq m\}$ is the vertex set of m disjoint union of K_1. Define a bijection $\mu : V \to \{1, 2, ..., p + ml\}$ as follows:

$$
\mu(x_i) = i, 1 \leq i \leq p
$$

$$
\mu(y^l_i) = \begin{cases}
\{p + (j - 1)m + k; & \text{if } j \equiv 1 \pmod{2}, \\
1 \leq j \leq l - 1, 1 \leq k \leq m \\
np{p + jm + 1 - k}; & \text{if } j \equiv 0 \pmod{2}, \\
2 \leq j \leq l, 1 \leq k \leq m.
\end{cases}
$$

Verification:

$$
\mu(x_i) = \sum_{i=1}^{p} \mu(x_i) + \sum_{k=1}^{m} \sum_{j=1}^{l} \mu(y^l_i) + \sum_{k=1}^{m} \sum_{j=1}^{l} \mu(y^l_i) = \frac{p(p+1)}{2} + \sum_{i=1}^{p} \frac{m(l+1)}{2} + \sum_{k=1}^{m} \sum_{j=1}^{l} \frac{m(l+1)}{2}.
$$

For a fixed $k_i, 1 \leq i \leq m$ and any $j_i, 1 \leq i \leq l$,

$$
w_{\mu}(y^l_i) = \sum_{i=1}^{p} \mu(x_i) + \sum_{i=1}^{p} \mu(y^l_i) + \sum_{i=1}^{p} \mu(y^l_i) = \frac{p(p+1)}{2} + \sum_{i=1}^{p} \frac{m(l+1)}{2} + \sum_{k=1}^{m} \frac{m(l+1)}{2}.
$$

Hence the proof.

Theorem 2.8 Let G be a (0, 1)-(a, 1) vertex anti-magic graph. Then $G + K_1$ admits $(1, 0)$ VBL.

Proof. Let $G(p, q)$ be a (0, 1)-(a, 1) vertex anti-magic graph with $\alpha : E \to \{1, 2, ..., q\}$ such that vertex weight $wt_{\alpha}(x_i) = a + i - 1$, for $1 \leq i \leq p$, $a > 0$. Consider the graph $G + K_1$ with vertex set $V’ = V \cup \{z\}$ and $E’ = E \cup \{zz_i : 1 \leq i \leq p\}$. Define a mapping
\[\mu : E' \rightarrow \{1, 2, \ldots, q, 1, \ldots, p + q\} \] as follows:
\[\mu(x_i) = p + q + 1 - i, \text{ for } 1 \leq i \leq p. \]

The vertex weight under the labeling \(\mu \) is
\[wt_\mu(x_i) = \mu(x_i) + wt_\lambda(x_i) = (p + q + 1 - i) + (a + i - 1) \]
\[= a + p + q + \lambda, 1 \leq i \leq p \]
and
\[wt_\mu(z) = \sum_{i=1}^{p} wt_\lambda(x_i) \]
\[= \sum_{i=1}^{p} (p + q + 1 - i) \]
\[= (p + q + 1)p - \sum_{i=1}^{p} i = \frac{1}{2}(p^2 + p + 2pq) = \beta. \]

Hence the proof.

Theorem 2.9 If an even order graph \(G \), has \((0, 1)-(a, 2)\) \(\mathrm{VAL} \), then \(G' = G + 2K_1 \) admits \((0, 1) \mathrm{VBL} \).

Proof Let \(G(p, q) \) be a \((0, 1)-(a, 2)\) vertex anti-magic graph with \(\mu : E \rightarrow \{1, 2, \ldots, q\} \) such that the vertex weight \(wt_\mu(x_i) = a - 2 + 2i \), for \(1 \leq i \leq p \). Consider the graph \(G' = G + 2K_1 \) with \(V' = V \cup \{y, z\} \) and \(\lambda = E' = E \cup \{yx, zx : 1 \leq i \leq p\} \). Define a mapping \(\mu' : E' \rightarrow \{1, 2, \ldots, 2p + q\} \) as given below:
\[\mu'(x_i) = \mu(x_i), 1 \leq i \leq p \]
\[\mu'(y) = \begin{cases} 2p + q + 1 - i; & \text{if } i \equiv 1 \pmod{2}, 2 \leq i \leq p - 1 \\ 2p + q + 1 - i; & \text{if } i \equiv 0 \pmod{2}, 2 \leq i \leq p \end{cases} \]
\[\mu'(z) = \begin{cases} 3p + q + 1 - i; & \text{if } i \equiv 1 \pmod{2}, 2 \leq i \leq p - 1 \\ 3p + q + 1 - i; & \text{if } i \equiv 0 \pmod{2}, 2 \leq i \leq p \end{cases} \]

Verification of the bimagic property for the above labeling.

When \(i \) is odd, \(wt_\mu(x_i) = wt_\mu(x_i) + \mu'(y) + \mu'(z) \)
\[= (a - 2 + 2i) + (3p + q + 1 - i) + (2p + q + 1 - i) \]
\[= a + 5p + 2q = \lambda. \]

When \(i \) is even, \(wt_\mu(x_i) = wt_\mu(x_i) + \mu'(y) + \mu'(z) \)
\[= a + 5 + 2q = \lambda. \]
\[wt_\mu(y) = \sum_{i \text{ odd}} \mu'(y) + \sum_{i \text{ even}} \mu'(y) \]
\[= \sum_{i \text{ odd}} (3p + q + 1 - i) + \sum_{i \text{ even}} (2p + q + 1 - i) \]
\[= (3p + q + 1)p - \sum_{i \text{ odd}} i + (2p + q + 1)p - \sum_{i \text{ even}} i \]
\[= (3p + q + 1)p - \left(\frac{p^2}{2}\right) + (2p + q + 1)p - \left(\frac{(p + q + 1)^2}{2}\right) \]
\[= 2p^2 + pq + \frac{p^2}{2} = \beta. \]
\[wt_\mu(z) = \sum_{i \text{ odd}} \mu'(z) + \sum_{i \text{ even}} \mu'(z) \]
\[= \sum_{i \text{ odd}} (p + q + p + 1 - i) + \sum_{i \text{ even}} (p + q + 2p + 1 - i) \]
\[= (p + q + p + 1)p^2 - \left(\frac{p^2}{2}\right)^2 + (p + q + 2p + 1)p^2 - \left(\frac{(p + q + 1)^2}{2}\right) \]
\[= 2p^2 + pq + \frac{p^2}{2} = \beta. \]

Hence, the graph \(G' \) has \((0, 1) \mathrm{VBL} \).

III. Conclusion

In this paper, we demonstrated the methods of obtaining new families of \((1, 1)\) vertex bi-magic, \((1, 0)\) vertex bi-magic and \((0, 1)\) vertex bi-magic graphs from vertex magic and vertex anti-magic graphs by performing graph operations. In future, we would like to extend these ideas to general graphs to obtain new families of graphs which do not admit bimagic labeling.

References