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Abstract— A powerful group theoretic technique is applied to 

transform non linear PDE of steady three-dimensional MHD 

laminar boundary layer stagnation point flow of non-Newtonian 

fluid into non-linear ODE. Two different group transformations 

(Linear and Spiral) are discussed and applied to find similarity 

equations of above mentioned flow problem. Numerical solution 

of the problem is obtained and presented graphically, for both 

Newtonian and non-Newtonian fluids. 

 

Index Terms— boundary layer, Dilatant, Group invariance, 

stagnation point, MHD, Power-Law fluid, Pseudo plastic. 

 
 MSC 2010 Codes —76W05, 76D10, 76M99. 

 

NOMENCLATURE 
u , v, w- Velocity components in X, Y, Z directions respectively 

 U, W- Main stream velocities in X and Z directions 

 - stress component  

- Strain rate component 

yx - stress tensor in the direction of X-axis perpendicular to Y-axis. 

y z - stress tensor in the direction of Z-axis perpendicular to Y-axis. 

 m- Physical constant, 

 n- Flow behaviour indices 

MHD- Magneto hydro dynamics 

 S – Magnetic parameter                        

Re - Reynolds number 

 -field density 

 - Stream function 

  - Similarity  variable 

 - Unknown function of x 

F,G- Similarity Functions 

I. INTRODUCTION 

N  past couple of decades, there have been numerous 

attempts made in applying boundary layer theory to non-

Newtonian fluids. The theory makes great simplification in 

equation of motion and as a consequence,  
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the equations are much simple to solve. For various non-

Newtonian fluid models the progress in such type of 

simplifications is bit slowly. Most work found in literature on 

the said topic is restricted to simple boundary layer flow of 

non-Newtonian power law fluids. Hansen and his co-worker 

[1, 2, 3] are rather first to derive the systematic similarity 

analysis for three-dimensional boundary layer flow of 

Newtonian fluids. Further they [4] have extended their work to 

non-Newtonian power- law fluids and have obtained class of 

similarity solutions including similarity solutions for small 

cross flow.  

Recently Manisha et al [5] have derived family of similarity 

equations for three-dimensional unsteady boundary layer flow 

of non-Newtonian power-law fluids using free-parameter 

technique. They have derived seven sets of similarity 

equations for such flow, past various geometries with their 

possible practical applications. In another published paper [6] 

they have also derived the similarity equations for steady 

three-dimensional boundary layer flow of all viscoinelastic 

non-Newtonian fluids by new similarity formulism, namely, 

generalized dimensional analysis with group theory and matrix 

aspects. 

Quite rare information is available in the literature about 

three dimensional magneto hydrodynamic boundary layer 

flows. This is because the governing partial differential 

equations for such flow are non-linear boundary value type 

and the presence of non-Newtonianality and the transverse 

magnetic field parameter poses extra difficulties while 

simplifying such flow equations. Timol and Timol [7] are 

probably first to drive basic equations and similarity solutions 

of three-dimensional magneto hydrodynamic boundary layer 

flow of Newtonian fluids. But in order to meet with similarity 

requirements they have assumed the specific form of outer 

flow and specific form of imposed magnetic field parameter in 

priory and hence sets of similarity equations they have derived 

are of limited practical applications. 

In the present paper using group theoretic method, the 

systematic similarity method is proposed to find similarity 

equations for steady three dimensional incompressible 

boundary layer flow of electrically conducting non-Newtonian 

power-law fluids past external surface under the influence of 

transverse magnetic field. It is observed that flow situation 

under consideration is independent of z-coordinate. And hence 

it is essentially quasi three-dimensional flow. Such flows are 
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characterized by the fact that streamline form a system of 

translates i.e. entire streamline pattern can be obtained by 

translating any particular streamline parallel to leading edge of 

the surface. It is hoped that by omitting dependence of flow 

quantities in one direction small qualitative information may 

be obtained on the characteristic of three-dimensional 

boundary layer flows of power-law fluids. It is observed that 

for some special cases present set of equations are well 

reduced to past well-known equations like Blasisus equation, 

Falkner, Skan equations etc.. 

II. BASIC EQUATIONS 

The power-law Ostwald-de Waele model has been found to 

be remarkably versatile and useful in representing flow 

behavior of many non-Newtonian fluids over quite a wide 

range of shearing rate. Mathematically it can be represented in 

the form [8] 

 

n-1

1τ = - m : Δ
2

    
  

 

 

where τ  and Δ are the stress tensor and the rate of 

deformation tensor, respectively; and m  and n  are physical 

constants different for different fluids which can be determined 

experimentally. Under the boundary layer assumptions, the 

only two non-vanishing components are [8] 

 
n-1

2 2 2

y x

u uτ = -m +
y y y

w
 
         
               
 

 

 
n-1

2 2 2

y z

uτ = -m +
y y y

w w
 
         
               
 

 

 

Where the absolute sign has been dropped since both terms 

within the sign are positive. Following Manisha et al [5], for 

above “equation of state”, the dimensionless equations 
governing the motion of three dimensional laminar 

incompressible magneto hydrodynamic boundary layer flow of 

non-Newtonian power-law fluids can be written as follow: 

Continuity equation: 

 

v
+ = 0

y

u

x

 
 

                                                                      (1) 

 

Momentum equation      

 

n-1
2 2 2

u u u
+ v = +

y y y y y

+ U + S(x) U - u (2)

u w
u

x

dU

dx

 
          
                
 

 

n-1
2 2 2

u u
+ v = + +

y y y y y

U + S(x) W - w (3)

u w w
u

x

dW

dx

 
          
                
 

with the boundary conditions                                            

               
y = 0: u = v = w = 0

y = : u = U(x),    w = W(x) 
  

where the non-dimensional quantities used are,  
1

n+1

0 0 0 0

1

n+1

0 0

u v w U
u = , v = Re , w = , U =

U U U U

W x y L S
W = , x = , y = Re ,   S(x) =

U L L U

   

   

Where      

2 - n n

0ρ U L
Re =

m
. 

The flow problem is quasi-two-dimensional in nature since the 

velocity components are independent of the z-coordinates. 

This point is discussed in detail by Hansen and Herzig [9]. The 

equation of continuity can be satisfied identically by 

introducing a function,  , which gives 

                        and v = -
y x

u
  


 

 

Equations (1), (2), and (3) then become 

1
2 2 22 2 2 2

2 2 2
= +

y y y y y

+ U + S(x) U - (4)

n

w

y x y x

dU

dx y

     



 
            

                   
 

 
  

   

n-1
2 2 22

2
= +

y y y y y

+ U + S(x) W - w 5

w w w w

y x x

dW

dx
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With the boundary conditions 

 

= 0: = w = 0

y = : = U(x),    w = W(x)  

y
x y

y

 



 


 





 

A group-theoretic analysis is employed in the next section to 

find the form of U(x) and W(x) for which similarity solutions 

will exist. 

III. GROUP-THEORETIC ANALYSIS 

Similarity analysis by the group-theoretic method is based on 

concepts derived from the theory of transformation group. This 

method was first introduced by Birkoff [10] and Morgan [11] 

and is discussed in detail in [12] & [13]. Two different groups 

of one-parameter transformation are usually found to give 

adequate treatment of boundary layer equations. Each group 

gives rise two cases, case-I and case-II which will be 

separately discussed. 

Case I. A one-parameter linear group of transformation is 

selected as 

                 

31 2

5 6 74

x = * , y = * , ψ = *
w = * , U = * , W = * , S = *

e x e y e

e w e U e W e S

    

      



 

Where 1 2 3 4 5 6 7, , , , , ,       and e are constants. 

We now seek relations among α’s such that the basic equations 
will be invariant under this group of transformation.  

Substituting the above transformation in equation (4) and (5) 

we get, 

 
1
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2 2 2
= +

y y y y y

+ U + S(x) U -

n

w

y x y x
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                                                                                               (6) 

Now for the equation (5), 
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With boundary conditions: 

0
y x

  
 

 
;  U x
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 ;  w W x    3 2 3 1
* *

0
* *

e e
y x
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 3 2 6
*

*
e e

y

     



U*;

74 * *e w e W
                         (8) 

From equations (6), (7) and (8), it is seem that if the basic 

equations are to be invariant under this group of 

transformation, the power of e in each term should be equal.  

Therefore equations (6), (7) and (8) give 

 

3 2 3 1 4                                    (9.1) 

3 2 5                                          (9.2) 

4 6                                                    (9.3) 

    3 2 12 2 1 0n n                      (9.4) 

  4 2 3 11 0n n                           (9.5) 

5 3 2 0                                          (9.6) 

7 5 3 2 12 2 0                         (9.7) 

7 3 2 1 0                                (9.8) 

 

 

From  equations (9.1) to (9.8),  

Let  
5 64

4 5 6

1 1 1

m
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n m

n




 



                              (10) 

 
2

1
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1

n m

n




 



                                  (11) 

7

1

1m



                                                 (12)  

The next step in this method is to find the so-called “absolute 
invariants” under this group of transformations.  Absolute 
invariants are functions having the same form before and after 

the transformation.  

Expanding the exponential of transformation in terms of 

Taylor’s series and neglecting the terms with second and 

higher order of , we get following characteristic equation 

The next step in this method is to find the so-called “absolute 
invariants” under this group of transformations.  Absolute 
invariants are functions having the same form before and after 

the transformation.  

Expanding the exponential of transformation in terms of 

Taylor’s series and neglecting the terms with second and 
higher order of , we get following characteristic equation 
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1 2 3 4 5 6 7

dx dy d dw dU dW dS

x y w U W S


       

       



2 3 4 5 6 7

1 11 1 1 1

dx dy d dw dU dW dS

x
y w U W S


     
    

       


   

 

2 1 2 1 1

1 1

1

dx dy d

n m n mx
y

n n

dw dU dW dS

mw mU mW m S




 

   
 

   


   (13) 

Solving (13) we get following similarity variables. 

 2 1

1

n m

n
yx

  
                                       (13.1)    

 
 2 1 1

1

n m

n
F x 

  
                                      (13.2) 

  m
G wx                                            (13.3) 

0

m
U Ux

                                               (13.4) 

 

 

 

0

m
W Wx

                                             (13.5) 

 1

0

m
S Sx

                                          (13.6) 

Now using this transformed similarity variables in equation (4) 

and (5), we obtain a set of ordinary differential equations. 
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.
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With the transformed boundary conditions 

0 0

0 : ' 0

: ' ,

F F G

F U G W



   
   

            (16) 

Case II: A one parameter spiral group of transformation is 

chosen in the form 

32

5 6 74
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x e y e

e w e U e W e S

  

      

  

 

Where 1 2 3 4 5 6 7, , , , , ,       and e are constants. 

We now seek relations among α’s such that the basic equations 

will be invariant under this group of transformation. This can 

be achieved by substituting the transformation in to equations 

(4) and (5). Thus, we obtain 
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Similarly, 
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With boundary conditions: 

   

 

 

3 2 3 74

3 2 6

0; ; ;

* *
0; * *

* *

*
* (19)

*

U x w W x
y x y

e e e w e W
y x

e e U
y

       

    

  

 







  
   

  
 

  
 





                                                                       

From equations (17), (18), and (19), it is seem that if the basic 

equations are to be invariant under this group of 

transformation, the power of e in each term should be equal.  

Therefore equations (17), (18) and (19) give                        

3 2 3 0                                       (20.1) 

3 2 6                                          (20.2) 

4 7                                                 (20.3) 

   3 22 2 1 0n n                        (20.4) 

  4 2 31 0n n                              (20.5) 

5 3 2 0                                       (20.6) 

7 6 3 2 4 0                          (20.7) 

7 3 2 0                                       (20.8) 

From the above  equations (20.1) to (20.8)  
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m



                                                     (23) 

 

The next step in this method is to find the so-called “absolute 
invariants” under this group of transformations.  Absolute 

invariants are functions having the same form before and after 

the transformation.  

Expanding the exponential of transformation in terms of 

Taylor’s series and neglecting the terms with second and 
higher order of , we get following characteristic equation 
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Solving (24) we get following similarity variables, 
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Now using this transformed similarity variables in equation (4) 

and (5), we obtain a set of ordinary differential equations. 
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With the transformed boundary conditions 
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             (28) 

Results and discussion: 
By applying linear transformation of group theoretic technique 

the governing equations reduce to a system of non-linear ODE’s 
with the appropriate boundary conditions. Finally the system of 

similarity equations (14) and (15) along with boundary 

conditions (16) are solved numerically using Maple ODE 

solver. As, in the present paper, the stagnation point flow is 

considered, the value of physical constant m is taken 1.and the 

values of Stream velocities W0 & U0 are assumed to be 1. The 

numerical results of velocity components F’ and G have been 

obtained for various values of the Power-Law viscosity index n 

taking values 0.5,1,1.2 and the various values of the magnetic 

parameter S0  taking values 0.2,0.5,1,1.2. 

 

Figures 1 and 2 shows that the velocity profiles F’ and G 

increase rapidly with an increase in the magnetic parameter S0 

for Newtonian fluids (i.e. for n=1). Figures 3 and 4 concludes 

that the velocity profiles F’ and G increase more rapidly than 

n=1 with an increase in the magnetic parameter S0  for non-

Newtonian fluids (i.e.Pseudoplastic ,n<1). Figures 5 and 6 

shows that the velocity profiles F’ and G increase less rapidly 

than n=1 with an increase in the magnatic parameter S0 for 

Newtonian fluids (i.e. for n=1) Dilatant (n>1) 
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