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Group Invariance for Non-Linear PDE’s:
3-D MHD Stagnation Point Flow of
Non-Newtonian Power-Law Fluids

'M. Patel, 2R. Patel and *M. G. Timol

Abstract— A powerful group theoretic technique is applied to
transform non linear PDE of steady three-dimensional MHD
laminar boundary layer stagnation point flow of non-Newtonian
fluid into non-linear ODE. Two different group transformations
(Linear and Spiral) are discussed and applied to find similarity
equations of above mentioned flow problem. Numerical solution
of the problem is obtained and presented graphically, for both
Newtonian and non-Newtonian fluids.

Index Terms— boundary layer, Dilatant, Group invariance,
stagnation point, MHD, Power-Law fluid, Pseudo plastic.
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NOMENCLATURE
U, v, w- Velocity components in X, Y, Z directions respectively
U, W- Main stream velocities in X and Z directions

T - stress component

A - Strain rate component

T - stress tensor in the direction of X-axis perpendicular to Y-axis.

7, . - stress tensor in the direction of Z-axis perpendicular to Y-axis.

m- Physical constant,

n- Flow behaviour indices
MHD- Magneto hydro dynamics
S — Magnetic parameter

Re - Reynolds number

P -field density

Y/ - Stream function

M - Similarity variable

é: - Unknown function of x

F,G- Similarity Functions

I. INTRODUCTION

IN past couple of decades, there have been numerous
attempts made in applying boundary layer theory to non-
Newtonian fluids. The theory makes great simplification in
equation of motion and as a consequence,
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the equations are much simple to solve. For various non-
Newtonian fluid models the progress in such type of
simplifications is bit slowly. Most work found in literature on
the said topic is restricted to simple boundary layer flow of
non-Newtonian power law fluids. Hansen and his co-worker
[1, 2, 3] are rather first to derive the systematic similarity
analysis for three-dimensional boundary layer flow of
Newtonian fluids. Further they [4] have extended their work to
non-Newtonian power- law fluids and have obtained class of
similarity solutions including similarity solutions for small
cross flow.

Recently Manisha et al [5] have derived family of similarity
equations for three-dimensional unsteady boundary layer flow
of non-Newtonian power-law fluids using free-parameter
technique. They have derived seven sets of similarity
equations for such flow, past various geometries with their
possible practical applications. In another published paper [6]
they have also derived the similarity equations for steady
three-dimensional boundary layer flow of all viscoinelastic
non-Newtonian fluids by new similarity formulism, namely,
generalized dimensional analysis with group theory and matrix
aspects.

Quite rare information is available in the literature about
three dimensional magneto hydrodynamic boundary layer
flows. This is because the governing partial differential
equations for such flow are non-linear boundary value type
and the presence of non-Newtonianality and the transverse
magnetic field parameter poses extra difficulties while
simplifying such flow equations. Timol and Timol [7] are
probably first to drive basic equations and similarity solutions
of three-dimensional magneto hydrodynamic boundary layer
flow of Newtonian fluids. But in order to meet with similarity
requirements they have assumed the specific form of outer
flow and specific form of imposed magnetic field parameter in
priory and hence sets of similarity equations they have derived
are of limited practical applications.

In the present paper using group theoretic method, the
systematic similarity method is proposed to find similarity
equations for steady three dimensional incompressible
boundary layer flow of electrically conducting non-Newtonian
power-law fluids past external surface under the influence of
transverse magnetic field. It is observed that flow situation
under consideration is independent of z-coordinate. And hence
it is essentially quasi three-dimensional flow. Such flows are
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characterized by the fact that streamline form a system of
translates i.e. entire streamline pattern can be obtained by
translating any particular streamline parallel to leading edge of
the surface. It is hoped that by omitting dependence of flow
quantities in one direction small qualitative information may
be obtained on the characteristic of three-dimensional
boundary layer flows of power-law fluids. It is observed that
for some special cases present set of equations are well
reduced to past well-known equations like Blasisus equation,
Falkner, Skan equations etc..

II. BASIC EQUATIONS

The power-law Ostwald-de Waele model has been found to
be remarkably versatile and useful in representing flow
behavior of many non-Newtonian fluids over quite a wide
range of shearing rate. Mathematically it can be represented in
the form [8]
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where T and A are the stress tensor and the rate of
deformation tensor, respectively; and m and n are physical
constants different for different fluids which can be determined
experimentally. Under the boundary layer assumptions, the
only two non-vanishing components are [8]
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Where the absolute sign has been dropped since both terms
within the sign are positive. Following Manisha et al [5], for
above “equation of state”, the dimensionless equations
governing the motion of three dimensional laminar
incompressible magneto hydrodynamic boundary layer flow of
non-Newtonian power-law fluids can be written as follow:
Continuity equation:

6u+@=0 (1)
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Momentum equation
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with the boundary conditions

y=0: u=v=w=0
y = oo u=Ux), w=W(X)
where the non-dimensional quantities used are,
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The flow problem is quasi-two-dimensional in nature since the
velocity components are independent of the z-coordinates.
This point is discussed in detail by Hansen and Herzig [9]. The
equation of continuity can be satisfied identically by
introducing a function, /, which gives
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Equations (1), (2), and (3) then become
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With the boundary conditions
y=0: v = v =w=0
ox Oy

0

5"” = U),
A group-theoretic analysis is employed in the next section to
find the form of U(x) and W(x) for which similarity solutions
will exist.

y = oo w = W(x)

III. GROUP-THEORETIC ANALYSIS

Similarity analysis by the group-theoretic method is based on
concepts derived from the theory of transformation group. This
method was first introduced by Birkoff [10] and Morgan [11]
and is discussed in detail in [12] & [13]. Two different groups
of one-parameter transformation are usually found to give
adequate treatment of boundary layer equations. Each group
gives rise two cases, case-I and case-Il which will be
separately discussed.

Case I. A one-parameter linear group of transformation is

selected as
X= e"x*, y=e® y*,

as&
U=e"U*,

€My ¥
0665 W

\‘II:

w=e™ w*, W =

Where &, @,, O, &, &5, O, A, and e are constants.

We now seek relations among a’s such that the basic equations
will be invariant under this group of transformation.
Substituting the above transformation in equation (4) and (5)
we get,
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From equations (6), (7) and (8), it is seem that if the basic
equations are to be invariant under this group of

transformation, the power of e in each term should be equal.
Therefore equations (6), (7) and (8) give
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The next step in this method is to find the so-called “absolute
invariants” under this group of transformations. Absolute
invariants are functions having the same form before and after
the transformation.

Expanding the exponential of transformation in terms of
Taylor’s series and neglecting the terms with second and
higher order of &, we get following characteristic equation

The next step in this method is to find the so-called “absolute
invariants” under this group of transformations. Absolute
invariants are functions having the same form before and after
the transformation.

Expanding the exponential of transformation in terms of
Taylor’s series and neglecting the terms with second and
higher order of £ , we get following characteristic equation



INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 2231-5330), VOL. 2, NO. 2, 2012 76

dx dy dV/ dw dU dW ds We now seek relations among a’s such that the basic equations
a - a,y oy a wo o U o W oS will be invariant under this group of transformation. This can
= be achieved by substituting the transformation in to equations
&_dy _dy _dw _dU _ dW _ d§ (4) and (5). Thus, we obtain
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With the transformed boundary conditions
n=0: F=F'=G=0
n=o0: F'=U,,G=W,

Case II: A one parameter spiral group of transformation is

(16)

chosen in the form
X= x*+ae,y=e" y* y=e" y*
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Where @, @,, Q,, &,, &5, Ay, A, and e are constants.
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From equations (17), (18), and (19), it is seem that if the basic
equations are to be invariant under this group of

transformation, the power of e in each term should be equal.

Therefore equations (17), (18) and (19) give
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From the above equations (20.1) to (20.8)
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a4,
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a,

The next step in this method is to find the so-called “absolute
invariants” under this group of transformations. Absolute
invariants are functions having the same form before and after
the transformation.

Expanding the exponential of transformation in terms of
Taylor’s series and neglecting the terms with second and
higher order of &, we get following characteristic equation
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gy dy:dl//:dw:dU:dW:dS
G m, A Gy Ay O
a, a, a, a, a, Q
v v
(n—2)m (Zn—l)m mw
n+l1 n+1
_d_U_dW _ds (24)

_mU_mW_m_S

Solving (24) we get following similarity variables,

ez}
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F(ﬂ) =ye (25.2)

G(n)=we™ (25.3)

U,=Ue™ (25.4)

W, =We™ (25.5)

S, =Se™ (25.6)

Now using this transformed similarity variables in equation (4)
and (5), we obtain a set of ordinary differential equations.

(F () | B e
2 (o) ] oo emus

(2n—1)m
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n+1
0 2 T
P [(F)Y+(G) |* G hemWu,
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With the transformed boundary conditions
n=0: F=F'=G=0
n=o0: F'=U,,G=W,

Results and discussion:

By applying linear transformation of group theoretic technique
the governing equations reduce to a system of non-linear ODE’s
with the appropriate boundary conditions. Finally the system of
similarity equations (14) and (15) along with boundary
conditions (16) are solved numerically using Maple ODE
solver. As, in the present paper, the stagnation point flow is
considered, the value of physical constant m is taken 1.and the
values of Stream velocities W, & U, are assumed to be 1. The
numerical results of velocity components '’ and G have been
obtained for various values of the Power-Law viscosity index n
taking values 0.5,1,1.2 and the various values of the magnetic
parameter S, taking values 0.2,0.5,1,1.2.

(27)

(28)

Figures 1 and 2 shows that the velocity profiles F’ and G
increase rapidly with an increase in the magnetic parameter Sy
for Newtonian fluids (i.e. for n=7). Figures 3 and 4 concludes
that the velocity profiles F’ and G increase more rapidly than
n=1] with an increase in the magnetic parameter S, for non-
Newtonian fluids (i.e.Pseudoplastic ,n<1). Figures 5 and 6
shows that the velocity profiles '’ and G increase less rapidly
than n=/ with an increase in the magnatic parameter S, for
Newtonian fluids (i.e. for n=1) Dilatant (n>1)
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