Robust Guaranteed Cost Control for Uncertain Switched Time-Delay Systems with Sampled-Data State Feedback and Linear Fractional Perturbations

Chang-Hua Lien1*, Ker-Wei Yu1, Hao-Chin Chang1, Long-Yeu Chung2, and Jenq-Der Chen3

Abstract—The robust guaranteed cost control for uncertain switched systems with sampled-data state feedback and time delay is investigated in this paper. Time-varying delay technique is provided to solve the system with sampled-data state feedback control. The upper bound for the sampled time of state is estimated from the proposed LMI optimization approach. A numerical example is illustrated to show the use of the main results.

Index Terms—Switched time-delay system, sampled-data state feedback; guaranteed cost control, LMI optimization approach; time-varying delay, linear fractional perturbation.

MSC 2010 Codes —93D15, 93C30, 93C57.

I. INTRODUCTION
Switched systems are often encountered in automated highway systems, automotive engine control system, chemical process, constrained robotics, power systems and power electronics, robot manufacture, and stepper motors [1]-[7]. Switched system is composed of a class of subsystems and the switching signal is used to specify which subsystem is activated in each instant of time. Hence many complicated phenomena are studied and proposed in recent years [4]. Time delay is often encountered in various practical systems; such as aircraft stabilization, manual control, models of lasers, neural networks, nuclear reactors, ship stabilization, and systems with lossless transmission lines. Sampled-data input is a practical and useful tool to implement some complicate control schemes; such as parallel distributed control in T-S fuzzy system [8]. Suppose that the states of system are measured by some feasible sensors, then the state values will be held until next measured instant to renew the state [8]-[12]. There are many researchers to consider this important issue for estimating sampled time $T>0$ to stabilize the systems. In the past, time-varying delay technique had been used to represent the sampled-data input [8]-[12].

This approach provides a useful analytic tool to estimate the upper bound of sampled time $T>0$ and attain the system performance.

H_∞ control and guaranteed cost control are two stabilization schemes with some respective performance indices [8], [12]. H_∞ control concept was proposed to reduce the effect of the disturbance input on the regulated output within a prescribed level and guarantee that the closed-loop system is stable. In our past results in [8], H_∞ control problem of fuzzy time-delay system with sampled-data input had been considered. Guaranteed cost control which not only makes the closed-loop system asymptotically stable but also guarantees an adequate level of performance. In [12], Lyapunov-Krasovskii functional with Leibniz-Newton formula had been used to find guaranteed control for T-S fuzzy systems by using time-varying delay input approach. In [13], some linear fractional perturbations are considered for T-S fuzzy time-delay systems. In this paper, the guaranteed cost control for switched time-delay systems with linear fractional perturbations is considered. Some additional nonnegative inequalities are introduced to improve the conservativeness of the proposed results in this paper.

Notations. For a matrix A, we denote symmetric negative definite by $A<0$. I means the identity matrix. $A\preceq B$ means that the matrix $B-A$ is symmetric positive semi-definite. \mathbb{N} is defined by $\{1, 2, \cdots, N\}$.

II. GUARANTEED COST CONTROL FOR SWITCHED SYSTEMS WITH NONLINEAR PERTURBATION AND SAMPLED-DATA STATE FEEDBACK
Consider a continuous-time switched system with time delay:

\begin{equation}
\dot{x}(t) = A_0 x(t) + A_1 x(t - \tau) + B_{\sigma}(t) u(t), \quad t \geq 0, \tag{1a}
\end{equation}

\begin{equation}
x(t) = \phi(t), \quad t \in [-\tau, 0]. \tag{1b}
\end{equation}

where $x(t) \in \mathbb{R}^n$ is the system state, $u(t) \in \mathbb{R}^p$ is the control input, time delay τ is a nonnegative constant, σ is a switching signal which is a piecewise constant function and depends on t, σ takes its values in the finite set \mathbb{N}, and the initial vector
φ ∈ C₀, where C₀ is the set of continuous functions from
[−τ, 0] to ℜⁿ. Matrices Aᵣ, Aᵢ, and Bᵢ are given. Δfᵢ(x(t))
is a perturbed nonlinear function satisfying
\[\| Δfᵢ(x(t)) \| ≤ \| Fᵢ(t) \| , \quad i \in \{1, 2, \ldots, m\}, \]
where Fᵢ is a given constant matrix. Define the following
functions \(\lambdaᵢ(σ) \), \(\forall i \in \mathbb{N} \), that will be used to represent our system:
\[\lambdaᵢ(σ) = \begin{cases} 1, & σ = i, \\ 0, & \text{otherwise}, \end{cases} \]
where Σ is defined in (1). The state equation of switched
system is rewritten as
\[\dot{x}(t) = \sum_{i=1}^{m} \lambdaᵢ(σ) \cdot [Aᵣx(t) + Aᵢx(t−τ) + Δfᵢ(x(t)) + Bᵢu(t)], \quad t ≥ 0, \]
\[x(t) = φ(t), \quad t \in [−τ, 0], \quad i = 1, 2, \ldots, m. \]
From (6b), we have \(0 ≤ h(t) < T \), \(t ≥ 0 \). The following lemma
will be used to design the state feedback control.

Lemma 1. (Schur complement of [14]). For a given matrix
\(S = \begin{bmatrix} S₁₁ & S₁₂ \\ * & S₂₂ \end{bmatrix} \) with \(S₁₁ = S₁₁ᵀ \), \(S₂₂ = S₂₂ᵀ \), then the following
conditions are equivalent:
(1) \(S < 0 \),
(2) \(S₂₂ < 0 \), \(S₁₁ - S₁₂S⁻¹₂₂S₁₂ < 0 \).

Now we present a result to design the sampled-data
guaranteed cost control (7) for system (8) with (2).

Theorem 1. Suppose for a given constant \(η > 0 \), the following
LMIs :
\[\begin{bmatrix} \hat{Q₁} & \hat{Q₂} \\ \hat{Q₂} & \hat{R₁} \end{bmatrix} > 0, \quad \begin{bmatrix} \hat{R₁} & \hat{R₂} \\ \hat{R₂} & \hat{R₁} \end{bmatrix} > 0, \quad \hat{R₁} > \hat{Q₁}, \]
\[Τ \cdot \hat{P} ≤ η⁻¹ \cdot \hat{P}₀, \]
where \(\hat{P}₀ \) is designed in this paper. The final feedback
control is inferred as
\[u(t) = -Kₙx(kT), \quad σ = i, \quad kT ≤ t < (k+1)T, \]
where \(Kₙ \) is designed in this paper. The final feedback
control is inferred as
\[u(t) = -\sum_{i=1}^{m} \lambdaᵢ(σ) \cdot Kᵢx(kT), \quad kT ≤ t < (k+1)T. \]
In this paper, we will provide a concept to treat the original
system with sampled-data input by time-varying delay. With
(6), the sampled-data control input can be described as follows:
\[u(t) = -\sum_{i=1}^{m} \lambdaᵢ(σ) \cdot Kᵢx(t−h(t)), \quad kT ≤ t < (k+1)T, \]
where \(h(t) \) is specified by
\[\hat{h}(t) = t - kT, \quad kT ≤ t < (k+1)T. \]
The system (4) can be rewritten as follows:
\[\dot{x}(t) = \sum_{i=1}^{m} \lambdaᵢ(σ) \cdot \lambdaᵢ(σ) \cdot \left[Aᵣx(t) + Aᵢx(t−τ) + Δfᵢ(x(t)) - BᵢKᵢx(t−h(t)) \right], \]
\[= \sum_{i=1}^{m} \lambdaᵢ(σ) \cdot \left[Aᵣx(t) + Aᵢx(t−τ) + Δfᵢ(x(t)) - BᵢKᵢx(t−h(t)) \right], \]
\[x(t) = φ(t), \quad t \in [−τ, 0], \quad i = 1, 2, \ldots, m. \]
\[\dot{\Omega} = T \cdot \dot{\hat{\mathbf{K}}} + \dot{\hat{\mathbf{K}}} [I \ - I \ 0] + [I \ - I \ 0]^T \dot{\hat{\mathbf{Q}}}^T \]
\[+ \dot{\hat{\mathbf{Q}}} [0 I \ - I] + [0 I \ - I]^T \] \dot{\hat{\mathbf{Q}}} . \quad (9d) \]

Then the system (4) with (2) is stabilizable by sampled-data input (6) and (7) with \(K = \hat{K}, \hat{P}^{-1} \) and the guaranteed cost is given by
\[J^* = \int_{-T}^0 \dot{V}(x(t)) + \int_{-T}^0 \Delta \eta(t) X^T(t) \left[2X^T(t)P_1 \Delta X(t) + \Delta X^T(t) \right] ds \]
\[+ \int_{-T}^0 \Delta \eta(t) X^T(t) \left[2X^T(t)P_2 \Delta X(t) + \Delta X^T(t) \right] ds \], \quad (9e)

where \(P_0 = \hat{P}^{-1}, \quad P_i = \hat{P}^{-1} \hat{P} \hat{P}^{-1}, \quad i \in \{1, 2, 3\} \).

Proof. Define the Lyapunov functional
\[V(x_t) = \int_{-T}^0 P_0 x(t) + \int_{-T}^0 \dot{V}(x(t)) ds \]
\[+ \int_{-T}^0 \Delta \eta(t) X^T(t) \left[2X^T(t)P_1 \Delta X(t) + \Delta X^T(t) \right] ds \], \quad (10a)

where \(P_0 = \hat{P}^{-1}, \quad P_i = \hat{P}^{-1} \hat{P} \hat{P}^{-1}, \quad i \in \{1, 2, 3\} \), are positive definite symmetric matrices. The time derivatives of \(V(x_t) \), along the trajectories of system (8) with (2) satisfy
\[\dot{V}(x_t) = X^T(t) \left[\dot{x}(t) - X^T(t) \right] . \quad (10b) \]

From the definition of \(\lambda_i(\sigma) \) with the above equation, we have
\[-\sum_{i=1}^m \lambda_i(\sigma) \cdot \left\{ 2X^T(t)P_1 \Delta X(t) + \Delta X^T(t) \right\} \]
\[= -\sum_{i=1}^m \lambda_i(\sigma) \cdot \left\{ 2X^T(t)P_1 \Delta X(t) + \Delta X^T(t) \right\} . \quad (10c) \]

Now we define a vector by
\[Y(t) = \left[X(t) \quad X^T(t - h(t)) \right] . \]

By Leibniz-Newton formula and LMIs (9a), the following additional nonnegative inequalities can be introduced:
\[\int_{-T+h(t)}^t X^T(s) X(s) ds \leq \int_{-T+h(t)}^t X^T(s) X(s) ds \leq \int_{-T}^t X^T(s) X(s) ds \]
\[= \int_{-T}^t X^T(s) X(s) ds \leq \int_{-T}^t X^T(s) X(s) ds \leq \int_{-T}^t X^T(s) X(s) ds \]
\[= T - h(t) \cdot X^T(t) + 2X^T(t) \dot{R}_t \Delta X(t) - X(t - h(t)) \]
\[+ \int_{-T}^t X^T(s) R_t \Delta X(s) ds \geq 0 \], \quad (10d)
\[
\Pi_i =
\begin{bmatrix}
\Pi_{1i} & \Pi_{2i} & 0 & \Pi_{4i} & \Pi_{5i}
\end{bmatrix}
\]
\begin{align*}
\Pi_{1i} &= P_0^i A_0^i + A_1^i P_0^i + P_1^i + \varepsilon_1^i : F_1^T F_1 + S_1, \\
\Pi_{2i} &= P_0^i A_2^i, \\
\Pi_{3i} &= P_0^i, \\
\Pi_{4i} &= P_0^i - P_3^i, \\
\Pi_{5i} &= -\varepsilon_1^i I.
\end{align*}
\] (13b)

\[
\Omega = T \cdot R_{1i} + Q_1^i [I - I] + [I - I] Q_1^T
\]
\begin{equation}
+ R_{1i} [0 I - I] + [0 I - I] R_{1i}^T.
\end{equation}
Pre- and post-multiplying the matrix \(P_0^i \) in (13b) by
\[
diag [P_0^i \ v_0^-1 \ P_0^i \ v_0^-1 \ v^i \ I]
\]
\begin{equation}
= \begin{bmatrix}
\hat{P}_0 & \hat{P}_1 & \hat{P}_2 & \hat{P}_3 & \hat{K}_i = K_i R_0^{-1}
\end{bmatrix}
\end{equation}
we have
\[
\hat{\Pi}_i =
\begin{bmatrix}
\hat{\Pi}_{1i} & \hat{\Pi}_{2i} & 0 & \hat{\Pi}_{4i} & \hat{\Pi}_{5i}
\end{bmatrix}
\]
\begin{align*}
\hat{\Pi}_{1i} &= \Pi_{1i} + \varepsilon_1^i \cdot \hat{P}_1 F_1^T \hat{P}_0^i + \hat{P}_0 \cdot \hat{P}_0^i, \\
\hat{\Pi}_{2i} &= \Pi_{2i}, \\
\hat{\Pi}_{3i} &= \Pi_{3i}, \\
\hat{\Pi}_{4i} &= \Pi_{4i}, \\
\hat{\Pi}_{5i} &= \Pi_{5i}.
\end{align*}
(14)

where \(\hat{\Pi}_{1i} = \hat{\Pi}_{1i} + \varepsilon_1^i \cdot \hat{P}_1 F_1^T \hat{P}_0^i + \hat{P}_0 \cdot \hat{P}_0^i \), \(\hat{\Pi}_{4i} \), \(k, l \in \{1, 2, \ldots, 7\} \) are defined in (9d). By Lemma 1, LMI \(\hat{\Pi}_i \) is equivalent to \(\hat{\Pi}_i \) in (14). The condition \(\hat{\Pi}_i \) is equivalent to
\[
\begin{bmatrix}
0 & 0 & \Pi_{17i} & \Pi_{27i} & \Pi_{47i} & \Pi_{57i}
\end{bmatrix}
\]
Note that
\[
\left[\dot{\hat{p}}_0 - \Phi_1^{-1} \right] \dot{\hat{p}}_k = \dot{\hat{p}}_k - \Phi_1^{-1} \left[\dot{\hat{p}}_0 - \Phi_1^{-1} \right] = \dot{\hat{p}}_k - \Phi_1^{-1} \left[\dot{\hat{p}}_0 - \Phi_1^{-1} \right] \geq 0 , \quad k \in \{ 1, 2, 3 \}.
\]
The following results are obtained from condition (16):
\[
- \dot{\hat{p}}_k \Phi_k \dot{\hat{p}}_k + \dot{\hat{p}}_k < 0 , \quad k \in \{ 1, 2, 3 \}.
\]
(17)

Conditions in (17) are equivalent to
\[
P_k = P_0^{-1} \dot{\hat{p}}_k - \Phi_k , \quad k \in \{ 1, 2, 3 \}.
\]

Hence we have
\[
\int_0^T x'(s) P_k x(s) ds = \text{trace} \left(\int_0^T x'(s) P_k x(s) ds \right) = \text{trace} \left(P_k \int_0^T x'(s) x(s) ds \right) = \text{trace} \left(P_k W_k T \right) \leq \text{trace} \left(W_k \Phi_k W_k \right),
\]
and
\[
\int_0^T (s + T) x'(s) P_k x(s) ds = \text{trace} \left(W_k T Q_k W_k \right) \leq \text{trace} \left(W_k \Phi_k W_k \right),
\]
By the similar formulation of [15], we can complete this proof.

Remark 1. For a given constant \(\eta > 0 \), the LMI optimization problem in (15) can be solved by the LMI Toolbox of Matlab. Simple "for loop" can be used to find the minimization of the guaranteed cost.

III. GUARANTEED COST CONTROL FOR UNCERTAIN SWITCHED SYSTEMS WITH LINEAR FRACTIONAL PERTURBATIONS

Consider the system (1) with linear fractional perturbations in the following form:
\[
\dot{x}(t) = \overline{A}_i x(t) + \overline{A}_i \phi(t) + \overline{B}_i \psi(t) + \Delta \eta \left(x(t) - \hat{x}(t) \right), \quad t \geq 0 ,
\]
(18a)
where \(\overline{A}_i, \overline{A}_i \phi(t), \) and \(\overline{B}_i \phi(t) \) are some system matrices with perturbations and satisfying
\[
\left[\overline{A}_i \overline{A}_i \phi(t) \overline{B}_i \phi(t) \right] = \begin{bmatrix} A_{i1} + \Delta A_{i1} & A_{i2} + \Delta A_{i2} & B_i + \Delta B_i \end{bmatrix}, \quad i \in \{ 1, 2, \cdots, m \},
\]
(19a)
where constant matrices \(A_{i1}, A_{i2}, \) and \(B_i \) are given. \(\Delta A_{i1}, \Delta A_{i2}, \) and \(\Delta B_i \) are some perturbed matrices and satisfying
\[
\left[\Delta A_{i1} \Delta A_{i2} \Delta B_i \right] = \Delta \eta \left(\begin{bmatrix} N_{i1} & N_{i2} \end{bmatrix} \right), \quad i \in \{ 1, 2, \cdots, m \},
\]
(19b)
\[
\Delta \eta(t) = \left[I - \Gamma(t) \Theta \right] \Gamma(t), \quad \Theta \Theta^T < I ,
\]
(19c)
where \(\Gamma(t) \) and \(\Theta \) are some given constant matrices with appropriate dimensions. \(\Theta \) is an unknown matrix representing the parameter perturbations which satisfies
\[
\Gamma^T(t) \Theta(t) \leq I .
\]
(19d)

Remark 2. The perturbations in (19) are the generalization form of the parametric perturbations in [12].

Lemma 2. [13] Suppose that \(\Delta \eta(t) \) is defined in (19c) and satisfying (19d), then for real matrices \(U_i, W_i, \) and \(X_i \) with \(X_i = X_i^T \), the following statements are equivalent:

1. The inequality is satisfied
 \[
 X_i + U_i \Delta \eta(t) W_i + W_i^T \Delta \eta^T(t) U_i^T < 0 ,
 \]
 (II)
2. There exists a scalar \(\mu_i > 0 \), such that
 \[
 \begin{bmatrix} X_i \mu_i \cdot U_i W_i^T \star - \mu_i \cdot I \mu_i \cdot \Theta_i^T \end{bmatrix} < 0 ,
 \]
 (20)
where the matrix \(\Theta_i \) is defined in (19c).

From Corollary 1 with the switched system in (18) with (2), (19), and Lemma 2, we can obtain the following results.

Theorem 2. Suppose for a given constant \(\eta > 0 \), the following optimization problem:

Minimize \(\alpha + \text{trace} \left(W_1^T \Phi_1 W_1 + W_2^T \Phi_2 W_2 + W_3^T \Phi_3 W_3 \right) \),
(21a)
subject to

1. \(\eta \) (9a), (9c), (15b),
2. \(\tilde{\Pi}_i = \begin{bmatrix} \tilde{\Pi}_{1i} & \tilde{\Pi}_{2i} & \tilde{\Pi}_{3i} \end{bmatrix} \),
(22b)
where
\[
\begin{bmatrix} \tilde{\Pi}_{1i} & \tilde{\Pi}_{2i} & \tilde{\Pi}_{3i} \end{bmatrix} = \begin{bmatrix} \hat{\Omega} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

\[
\begin{bmatrix} \tilde{\Pi}_{1i} & \tilde{\Pi}_{2i} & \tilde{\Pi}_{3i} \end{bmatrix} = \begin{bmatrix} \hat{\Pi}_{1i} & \hat{\Pi}_{2i} & \hat{\Pi}_{3i} \end{bmatrix} \]

\[
\begin{bmatrix} \hat{\Pi}_{1i} & \hat{\Pi}_{2i} & \hat{\Pi}_{3i} \end{bmatrix} = \begin{bmatrix} \hat{\Pi}_{1i} & \hat{\Pi}_{2i} & \hat{\Pi}_{3i} \end{bmatrix} \]
definite matrices $\hat{P}_0, \hat{P}_i, \hat{P}_j, \hat{P}_k, \hat{Q}_{22}, \hat{R}_{22}, \Phi_1, \Phi_2, \Phi_3 \in \mathbb{R}^{n \times n}$, $\hat{Q}_{11} \in \mathbb{R}^{n \times n}$, $\hat{K}_1 \in \mathbb{R}^{n \times m}$, matrices $\hat{Q}_{12} \in \mathbb{R}^{n \times n}$, $\hat{K}_2 \in \mathbb{R}^{n \times n}$, $\hat{K}_3 \in \mathbb{R}^{n \times n}$, where matrices W_1, W_2, and W_3 are given in (15c), $\hat{\Xi}_{\ell i}, k, l \in \{1,2,\ldots, 9\}$, and $\hat{\Omega}$ are defined in (9d) and $\hat{\Xi}_{10i} = \hat{\Xi}_{110i} = \mu_i \cdot M_i$, $\hat{\Xi}_{111i} = \hat{P}_0 N_i^T$, $\hat{\Xi}_{21i} = -\hat{K}_i^T N_i^T$, $\hat{\Xi}_{141i} = \hat{P}_0 N_i^T$. Then the control (6) with (7) and the gain $K_i = \hat{K}_i \hat{P}_0^{-1}$ is the guaranteed cost control of the switched system in (18) with (2) and (19), and the guaranteed cost is given in (9e) with $P_0 = \hat{P}_0^{-1}, P_i = \hat{P}_0^{-1} \hat{P}_i \hat{P}_0^{-1}$.

Proof. Consider the switched system (18) with (2) and (19), the stability LMI condition in (9b) should be rewritten as follows:

$$
\begin{bmatrix}
\hat{\Xi}_{11} & \hat{\Xi}_{12} & 0 & \hat{\Xi}_{14} & \hat{\Xi}_{15} & 0 & \hat{\Xi}_{17} & \hat{\Xi}_{18} & \hat{\Xi}_{19} \\
* & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & \hat{\Xi}_{33} & 0 & 0 & 0 & 0 & 0 \\
* & * & * & \hat{\Xi}_{44} & 0 & 0 & 0 & 0 \\
* & * & * & * & \hat{\Xi}_{55} & 0 & 0 & 0 \\
* & * & * & * & * & \hat{\Xi}_{66} & 0 & 0 \\
* & * & * & * & * & * & \hat{\Xi}_{77} & 0 \\
* & * & * & * & * & * & * & \hat{\Xi}_{88} & 0 \\
* & * & * & * & * & * & * & * & \hat{\Xi}_{99} \\
\end{bmatrix}
$$

$$
\hat{\Omega} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

where $\hat{\Xi}_{\ell i}, k, l \in \{1,2,\ldots, 9\}$, and $\hat{\Omega}$ are defined in (9d), and

$$
\begin{bmatrix}
\hat{\Xi}_{11} & \hat{\Xi}_{12} & 0 & \hat{\Xi}_{14} & \hat{\Xi}_{15} & 0 & \hat{\Xi}_{17} & \hat{\Xi}_{18} & \hat{\Xi}_{19} \\
* & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & \hat{\Xi}_{33} & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & * & \hat{\Xi}_{44} & 0 & 0 & 0 & 0 & 0 \\
* & * & * & * & \hat{\Xi}_{55} & 0 & 0 & 0 & 0 \\
* & * & * & * & * & \hat{\Xi}_{66} & 0 & 0 & 0 \\
* & * & * & * & * & * & \hat{\Xi}_{77} & 0 & 0 \\
* & * & * & * & * & * & * & \hat{\Xi}_{88} & 0 \\
* & * & * & * & * & * & * & * & \hat{\Xi}_{99} \\
\end{bmatrix}
$$

+ $\begin{bmatrix}
M_i & M_i & M_i & M_i & M_i & \Delta_i(t) & \Delta_i(t) & \Delta_i(t) & \Delta_i(t) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
= 0$,

This proof can be completed in the similar formulation of Theorem 1 and Corollary 1.

IV. NUMERICAL EXAMPLE

Consider the switched system in (18) with (2), (19), and the following parameters:

$$
A_{11} = \begin{bmatrix}
-2 & 0.1 \\
0.4 & -1.1
\end{bmatrix},
A_{12} = \begin{bmatrix}
-1.9 & 0 \\
-0.2 & -1.1
\end{bmatrix},
A_{21} = \begin{bmatrix}
-1 & 0.2 \\
0 & -1
\end{bmatrix},
$$

$$
A_{22} = \begin{bmatrix}
-0.8 & 0 \\
-1 & -1
\end{bmatrix},
B_1 = \begin{bmatrix}
1 \\
-0.3
\end{bmatrix},
B_2 = \begin{bmatrix}
1.2 \\
-0.4
\end{bmatrix},
$$

$$
F_1 = F_2 = 0.1 \cdot I, \quad \Theta_1 = \Theta_2 = 0.1, \quad \tau = 3,
$$

$$
M_1 = M_2 = \begin{bmatrix}
0.1 \\
0.2
\end{bmatrix},
N_{11} = N_{12} = \begin{bmatrix}
0.2 \\
0.1
\end{bmatrix},
$$

$$
N_{21} = N_{22} = \begin{bmatrix}
0.1 \\
0.05
\end{bmatrix},
N_{31} = N_{32} = 0.05,
$$

$$
S_1 = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix},
S_2 = 1, \quad x(t) = \begin{bmatrix}
1 \\
-1
\end{bmatrix} t \in [-3,0].
$$

(A) If the upper bound for state sampled time is given by $T = 0.1$, the optimization problem in Theorem 2 with $\eta = 80$ has a feasible solution

$$
\hat{K}_i = \begin{bmatrix}
0.004 & 0.019 \\
0.0049 & 0.0288
\end{bmatrix}.
$$
The switched system in (18) with (2), (19), and (23) is stabilizable by sampled-data state input in (6) and (7) with
\[K_1 = \hat{K}_1 \hat{P}_0^{-1} = \begin{bmatrix} 0.8711 \\ 0.6015 \end{bmatrix}, \]
\[K_2 = \hat{K}_2 \hat{P}_0^{-1} = \begin{bmatrix} 1.3435 \\ 0.9604 \end{bmatrix}. \]
The guaranteed cost is given by \(J^* = 138.1399 \). In this case, the guaranteed cost performance can be provided via the stabilizing robust control in (6) and (7) with the sampled time less than 0.1 second.

(B) If the upper bound of state sampled time is given by \(T = 0.2 \), the optimization problem in Theorem 2 with \(\eta = 28 \) has a feasible solution
\[\hat{K}_1 = \begin{bmatrix} 0.0016 & 0.0175 \end{bmatrix}, \hat{K}_2 = \begin{bmatrix} 0.0003 & 0.0308 \end{bmatrix}, \]
\[\hat{P}_0 = \begin{bmatrix} 0.0296 & -0.0364 \\ -0.0364 & 0.0809 \end{bmatrix}. \]
The switched system in (18) with (2), (19), and (23) is stabilizable by sampled-data state input in (6) and (7) with
\[K_1 = \hat{K}_1 \hat{P}_0^{-1} = \begin{bmatrix} 0.7161 \\ 0.5391 \end{bmatrix}, \]
\[K_2 = \hat{K}_2 \hat{P}_0^{-1} = \begin{bmatrix} 1.0285 \\ 0.8445 \end{bmatrix}. \]
The guaranteed cost is given by \(J^* = 141.486 \). In this case, the guaranteed cost performance can be provided via the stabilizing robust control in (6) and (7) with the sampled time less than 0.2 second.

V. CONCLUSION

In this paper, the guaranteed cost control problem for a class of uncertain switched time-delay system with sampled-data state feedback has been studied. Based on the LMI optimization approach and time-varying delay transformation technique, some delay-dependent criteria have been proposed to minimize the upper bound of the guaranteed cost for the system with nonlinear and linear fractional perturbations.

ACKNOWLEDGMENT

The research reported here was supported by the National Science Council of Taiwan, R.O.C. under grant no. NSC 99-2221-E-022-003.

REFERENCES